Detailed explanation of the friend mechanism of C++ functions
C The friend mechanism allows non-member functions or classes to access private or protected members of other classes to achieve the following purposes: Allow non-member functions to access private members Allow member functions to access private members of other classes Allow class member functions to access another class Private members of a class
Detailed explanation of the friend mechanism of C functions
The friend mechanism is a method that allows functions or classes to access other Characteristics of private or protected members of a class or function. In C, the friend mechanism can achieve the following purposes:
- Allow non-member functions to access private members of a class
- Allow member functions of a class to access private members of another class
Syntax
-
Global function friend declaration:
friend 返回值类型 函数名(参数列表);
Copy after login Class friend declaration:
friend class 类名;
Copy after loginClass member function friend declaration:
friend 返回值类型 类名::成员函数名(参数列表);
Copy after login
Practical case:
Problem: Design a Point
class, which has private members x
and y
, and there is a print()
function that prints all private members. Now, we want an additional printInfo()
function that can access the private members of the Point
class and print them.
Implementation:
// Point 类 class Point { private: int x; int y; public: // 友元函数,可以访问 Point 类的私有成员 friend void printInfo(Point& point); // Point 类的成员函数 void print() { std::cout << "x: " << x << ", y: " << y << std::endl; } }; // 全局友元函数,可以访问 Point 类的私有成员 void printInfo(Point& point) { std::cout << "x: " << point.x << ", y: " << point.y << std::endl; } int main() { Point point{10, 20}; point.print(); // 输出:x: 10, y: 20 printInfo(point); // 输出:x: 10, y: 20 return 0; }
The above is the detailed content of Detailed explanation of the friend mechanism of C++ functions. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In C++ concurrent programming, the concurrency-safe design of data structures is crucial: Critical section: Use a mutex lock to create a code block that allows only one thread to execute at the same time. Read-write lock: allows multiple threads to read at the same time, but only one thread to write at the same time. Lock-free data structures: Use atomic operations to achieve concurrency safety without locks. Practical case: Thread-safe queue: Use critical sections to protect queue operations and achieve thread safety.

C++ object layout and memory alignment optimize memory usage efficiency: Object layout: data members are stored in the order of declaration, optimizing space utilization. Memory alignment: Data is aligned in memory to improve access speed. The alignas keyword specifies custom alignment, such as a 64-byte aligned CacheLine structure, to improve cache line access efficiency.

The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

Implementing a custom comparator can be accomplished by creating a class that overloads operator(), which accepts two parameters and indicates the result of the comparison. For example, the StringLengthComparator class sorts strings by comparing their lengths: Create a class and overload operator(), returning a Boolean value indicating the comparison result. Using custom comparators for sorting in container algorithms. Custom comparators allow us to sort or compare data based on custom criteria, even if we need to use custom comparison criteria.

Golang and C++ are garbage collected and manual memory management programming languages respectively, with different syntax and type systems. Golang implements concurrent programming through Goroutine, and C++ implements it through threads. Golang memory management is simple, and C++ has stronger performance. In practical cases, Golang code is simpler and C++ has obvious performance advantages.

There are three ways to copy a C++ STL container: Use the copy constructor to copy the contents of the container to a new container. Use the assignment operator to copy the contents of the container to the target container. Use the std::copy algorithm to copy the elements in the container.

C++ smart pointers implement automatic memory management through pointer counting, destructors, and virtual function tables. The pointer count keeps track of the number of references, and when the number of references drops to 0, the destructor releases the original pointer. Virtual function tables enable polymorphism, allowing specific behaviors to be implemented for different types of smart pointers.

C++ multi-threaded programming implementation based on the Actor model: Create an Actor class that represents an independent entity. Set the message queue where messages are stored. Defines the method for an Actor to receive and process messages from the queue. Create Actor objects and start threads to run them. Send messages to Actors via the message queue. This approach provides high concurrency, scalability, and isolation, making it ideal for applications that need to handle large numbers of parallel tasks.
