Home Backend Development C++ What are the non-reentrant functions in C++?

What are the non-reentrant functions in C++?

Apr 22, 2024 pm 05:33 PM
c++ standard library

Non-reentrant functions are functions that cannot be called by multiple threads at the same time. Some functions in the C standard library are non-reentrant, including input/output stream objects, time and date functions, and signal processing functions. , some mathematical functions, environment variable functions, and file system functions. Non-reentrant functions should be avoided in multi-threaded programs. If this cannot be avoided, preventive measures such as mutexes, atomic operations, or thread-local storage can be taken to ensure thread safety.

What are the non-reentrant functions in C++?

Non-reentrant functions in C

What is a non-reentrant function?

Non-reentrant functions refer to functions that cannot be called by multiple threads at the same time. If multiple threads call non-reentrant functions at the same time, unpredictable behavior may result, such as data corruption or program crashes.

Non-reentrant functions in C

Some functions in the C standard library are non-reentrant, including:

  • Input/Output Stream Object (std::cin, std::cout, std::cerr)
  • Time and date functions (std::time, std::localtime)
  • Signal processing function (std::signal)
  • Some mathematical functions (std::rand)
  • Environment variable function (std::getenv)
  • File system functions (such as std::ifstream and std::ofstream )

Avoid non-reentrant functions

In multi-threaded programs, avoid using non-reentrant functions. If they cannot be avoided, additional precautions must be taken to ensure thread safety. Typical solutions include:

  • Mutex: A mutex is a lock that is used to ensure that only one thread can access a shared resource at the same time (such as non-repeatable into the function).
  • Atomic operations: Atomic operations guarantee that data can be accessed and modified in an indivisible manner even in a multi-threaded environment.
  • Thread Local Storage (TLS): TLS provides an isolated memory space for each thread, allowing threads to store private data without conflicting with other threads.

The above is the detailed content of What are the non-reentrant functions in C++?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to implement the Strategy Design Pattern in C++? How to implement the Strategy Design Pattern in C++? Jun 06, 2024 pm 04:16 PM

The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

How to use C++ template inheritance? How to use C++ template inheritance? Jun 06, 2024 am 10:33 AM

C++ template inheritance allows template-derived classes to reuse the code and functionality of the base class template, which is suitable for creating classes with the same core logic but different specific behaviors. The template inheritance syntax is: templateclassDerived:publicBase{}. Example: templateclassBase{};templateclassDerived:publicBase{};. Practical case: Created the derived class Derived, inherited the counting function of the base class Base, and added the printCount method to print the current count.

How to handle cross-thread C++ exceptions? How to handle cross-thread C++ exceptions? Jun 06, 2024 am 10:44 AM

In multi-threaded C++, exception handling is implemented through the std::promise and std::future mechanisms: use the promise object to record the exception in the thread that throws the exception. Use a future object to check for exceptions in the thread that receives the exception. Practical cases show how to use promises and futures to catch and handle exceptions in different threads.

Why does an error occur when installing an extension using PECL in a Docker environment? How to solve it? Why does an error occur when installing an extension using PECL in a Docker environment? How to solve it? Apr 01, 2025 pm 03:06 PM

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

What is the role of char in C strings What is the role of char in C strings Apr 03, 2025 pm 03:15 PM

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

How does C++ memory management optimize memory usage? How does C++ memory management optimize memory usage? Jun 05, 2024 pm 10:41 PM

Optimization techniques for C++ memory management include: using smart pointers (RAII), reducing frequent allocations, avoiding unnecessary copies, using low-level APIs (with caution), and analyzing memory usage. Through these techniques, such as using smart pointers and caching in image processing applications, memory usage and performance can be significantly optimized.

Quantitative currency trading software Quantitative currency trading software Mar 19, 2025 pm 04:06 PM

This article explores the quantitative trading functions of the three major exchanges, Binance, OKX and Gate.io, aiming to help quantitative traders choose the right platform. The article first introduces the concepts, advantages and challenges of quantitative trading, and explains the functions that excellent quantitative trading software should have, such as API support, data sources, backtesting tools and risk control functions. Subsequently, the quantitative trading functions of the three exchanges were compared and analyzed in detail, pointing out their advantages and disadvantages respectively, and finally giving platform selection suggestions for quantitative traders of different levels of experience, and emphasizing the importance of risk assessment and strategic backtesting. Whether you are a novice or an experienced quantitative trader, this article will provide you with valuable reference

How do C++ Lambda expressions improve performance? How do C++ Lambda expressions improve performance? Jun 06, 2024 am 11:35 AM

Yes, Lambda expressions can significantly improve C++ performance because it allows functions to be passed as variables and eliminates the overhead of function calls through inline unrolling, such as: Inline unrolling optimization: inserting code directly into the calling location, eliminating function call overhead . Lightweight functions: Lambda expressions are typically more lightweight than regular functions, further reducing overhead. Practical example: In the sorting algorithm, Lambda expressions eliminate comparison function calls and improve performance. Other usage scenarios: as callback function, data filtering and code simplification. Caveats: Capture variables carefully, consider memory usage, and avoid overuse to maintain readability.

See all articles