


Detailed explanation of Javascript closure (Closure)_javascript skills
The following are my study notes, which should be very useful for Javascript beginners.
1. Scope of variables
To understand closures, you must first understand Javascript’s special variable scope.
The scope of variables is nothing more than two types: global variables and local variables.
The special thing about Javascript language is that global variables can be read directly inside the function.
var n=999; function f1(){ alert(n); } f1(); // 999
On the other hand, local variables within a function cannot be read outside the function.
function f1(){ var n=999; } alert(n); // error
There is something to note here. When declaring variables inside a function, you must use the var command. If you don't use it, you are actually declaring a global variable!
function f1(){ n=999; } f1(); alert(n); // 999
2. How to read local variables from the outside?
For various reasons, we sometimes need to get local variables within a function. However, as mentioned before, this is not possible under normal circumstances and can only be achieved through workarounds.
That is to define another function inside the function.
function f1(){ var n=999; function f2(){ alert(n); // 999 } }
In the above code, function f2 is included inside function f1. At this time, all local variables inside f1 are visible to f2. But the reverse doesn't work. The local variables inside f2 are invisible to f1. This is the "chain scope" structure unique to the Javascript language. The child object will search for the variables of all parent objects level by level. Therefore, all variables of the parent object are visible to the child object, but not vice versa.
Since f2 can read local variables in f1, then as long as f2 is used as the return value, can’t we read its internal variables outside f1?
function f1(){ var n=999; function f2(){ alert(n); } return f2; } var result=f1(); result(); // 999
3. The concept of closure
The f2 function in the code in the previous section is a closure.
The definition of "closure" in various professional literature is very abstract and difficult to understand. My understanding is that a closure is a function that can read the internal variables of other functions.
Since in the Javascript language, only sub-functions inside the function can read local variables, closures can be simply understood as "functions defined inside a function".
So, in essence, closure is a bridge connecting the inside of the function with the outside of the function.
4. The purpose of closure
Closures can be used in many places. Its greatest uses are two. One is to read the variables inside the function as mentioned earlier, and the other is to keep the values of these variables in memory.
How to understand this sentence? Please look at the code below.
function f1(){ var n=999; nAdd=function(){n+=1} function f2(){ alert(n); } return f2; } var result=f1(); result(); // 999 nAdd(); result(); // 1000
In this code, result is actually the closure f2 function. It was run twice, the first time the value was 999, the second time the value was 1000. This proves that the local variable n in function f1 is always stored in memory and is not automatically cleared after f1 is called.
Why is this happening? The reason is that f1 is the parent function of f2, and f2 is assigned to a global variable, which causes f2 to always be in memory, and the existence of f2 depends on f1, so f1 is always in memory and will not be deleted after the call is completed. , recycled by the garbage collection mechanism (garbage collection).
Another thing worth noting in this code is the line "nAdd=function(){n =1}". First of all, the var keyword is not used before nAdd, so nAdd is a global variable, not a local variable. variable. Secondly, the value of nAdd is an anonymous function, and the anonymous function itself is also a closure, so nAdd is equivalent to a setter, which can operate on local variables inside the function outside the function.
5. Points to note when using closures
1) Since closures will cause the variables in the function to be stored in memory, which consumes a lot of memory, closures cannot be abused, otherwise it will cause performance problems on the web page, and may lead to memory leaks in IE. The solution is to delete all unused local variables before exiting the function.
2) The closure will change the value of the variable inside the parent function outside the parent function. Therefore, if you use the parent function as an object, the closure as its public method, and the internal variables as its private value, you must be careful not to Feel free to change the value of the variable inside the parent function.
6. Questions
If you can understand the results of the following two pieces of code, you should understand the operation mechanism of closures.
Code Snippet 1
var name = "The Window"; var object = { name : "My Object", getNameFunc : function(){ return function(){ return this.name; }; } }; alert(object.getNameFunc()());
Code snippet 2
var name = "The Window"; var object = { name : "My Object", getNameFunc : function(){ var that = this; return function(){ return that.name; }; } }; alert(object.getNameFunc()());
The above is the entire content of this article, I hope you all like it.

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In C++, a closure is a lambda expression that can access external variables. To create a closure, capture the outer variable in the lambda expression. Closures provide advantages such as reusability, information hiding, and delayed evaluation. They are useful in real-world situations such as event handlers, where the closure can still access the outer variables even if they are destroyed.

C++ Lambda expressions support closures, which save function scope variables and make them accessible to functions. The syntax is [capture-list](parameters)->return-type{function-body}. capture-list defines the variables to capture. You can use [=] to capture all local variables by value, [&] to capture all local variables by reference, or [variable1, variable2,...] to capture specific variables. Lambda expressions can only access captured variables but cannot modify the original value.

A closure is a nested function that can access variables in the scope of the outer function. Its advantages include data encapsulation, state retention, and flexibility. Disadvantages include memory consumption, performance impact, and debugging complexity. Additionally, closures can create anonymous functions and pass them to other functions as callbacks or arguments.

Title: Memory leaks caused by closures and solutions Introduction: Closures are a very common concept in JavaScript, which allow internal functions to access variables of external functions. However, closures can cause memory leaks if used incorrectly. This article will explore the memory leak problem caused by closures and provide solutions and specific code examples. 1. Memory leaks caused by closures The characteristic of closures is that internal functions can access variables of external functions, which means that variables referenced in closures will not be garbage collected. If used improperly,

The impact of function pointers and closures on Go performance is as follows: Function pointers: Slightly slower than direct calls, but improves readability and reusability. Closures: Typically slower, but encapsulate data and behavior. Practical case: Function pointers can optimize sorting algorithms, and closures can create event handlers, but they will bring performance losses.

Closures in Java allow inner functions to access outer scope variables even if the outer function has exited. Implemented through anonymous inner classes, the inner class holds a reference to the outer class and keeps the outer variables active. Closures increase code flexibility, but you need to be aware of the risk of memory leaks because references to external variables by anonymous inner classes keep those variables alive.

Yes, code simplicity and readability can be optimized through chained calls and closures: chained calls link function calls into a fluent interface. Closures create reusable blocks of code and access variables outside functions.

Anonymous functions are concise and anonymous, but have poor readability and are difficult to debug; closures can encapsulate data and manage state, but may cause memory consumption and circular references. Practical case: Anonymous functions can be used for simple numerical processing, and closures can implement state management.
