Home Backend Development C++ How do C++ function overloading and virtual functions work together?

How do C++ function overloading and virtual functions work together?

Apr 26, 2024 am 10:09 AM
c++ function overloading virtual function

Function overloading in C allows defining different implementations for functions of the same name with different parameters, while virtual functions allow overriding base class functions in derived classes to achieve polymorphism. Function overloading and virtual functions can work together. By designing a virtual overloaded function in the base class, the derived class can only overload versions of specific parameter combinations, thereby providing more flexible polymorphism, such as calculating different types in practical cases The distance of the shape from its origin.

C++ 函数重载与虚函数如何协作?

Cooperation of function overloading and virtual functions in C

Introduction

C language provides two mechanisms to achieve polymorphism: function overloading and virtual functions. Function overloading allows defining multiple functions with the same name but different behavior based on parameter types. Virtual functions allow functions in a base class to be overridden in a derived class, thus supporting polymorphism in inheritance.

Function Overloading

Function overloading allows defining different implementations for multiple functions with the same name but different parameter lists. The compiler will choose the correct function based on the argument types when called. For example:

int add(int a, int b) {
  return a + b;
}
double add(double a, double b) {
  return a + b;
}
Copy after login

When used:

int sum1 = add(1, 2);  // 呼叫整數版本
double sum2 = add(1.5, 2.3);  // 呼叫浮點版本
Copy after login

Virtual function

Virtual function allows a derived class to override a function in a base class. When a virtual function is called through a base class pointer, the overridden version in the derived class is executed. For example:

class Shape {
public:
  virtual double getArea() const = 0;
};

class Circle : public Shape {
public:
  double getArea() const override {
    return 3.14 * radius * radius;
  }
private:
  double radius;
};
Copy after login

When used:

Shape* shape = new Circle(5.0);
double area = shape->getArea();  // 會呼叫 Circle::getArea()
Copy after login

Collaboration of function overloading and virtual functions

Function overloading and virtual functions can work together to Provides more flexible polymorphism. By designing a virtual overloaded function in the base class, a derived class can overload only versions with specific parameter combinations. For example:

class Shape {
public:
  virtual double getArea(bool isFilled) const {
    return 0.0;
  }
};

class Circle : public Shape {
public:
  double getArea(bool isFilled) const override {
    if (isFilled) {
      return 3.14 * radius * radius;
    } else {
      return 0.0;
    }
  }
};
Copy after login

When used:

Shape* shape = new Circle(5.0);
double filledArea = shape->getArea(true);  // 呼叫 Circle::getArea(bool)
double unfilledArea = shape->getArea(false);  // 呼叫 Shape::getArea(bool)
Copy after login

Practical case

The following is an example of using function overloading and virtual function collaboration in computational geometry Practical case:

class Shape {
public:
  virtual double distanceToOrigin() const = 0;
};

class Point : public Shape {
public:
  double distanceToOrigin() const override {
    return 0.0;
  }
};

class Circle : public Shape {
public:
  double distanceToOrigin() const override {
    return radius;
  }
};

class Rectangle : public Shape {
public:
  double distanceToOrigin() const override {
    return min(x, y);
  }
};

int main() {
  Shape* shapes[] = {new Point(), new Circle(5.0), new Rectangle(3.0, 4.0)};
  for (Shape* shape : shapes) {
    cout << "距離原點: " << shape->distanceToOrigin() << endl;
  }
}
Copy after login

This code demonstrates the use of function overloading and virtual functions to calculate the distance from the origin of different types of shapes.

The above is the detailed content of How do C++ function overloading and virtual functions work together?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What is the role of char in C strings What is the role of char in C strings Apr 03, 2025 pm 03:15 PM

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Why does an error occur when installing an extension using PECL in a Docker environment? How to solve it? Why does an error occur when installing an extension using PECL in a Docker environment? How to solve it? Apr 01, 2025 pm 03:06 PM

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Four ways to implement multithreading in C language Four ways to implement multithreading in C language Apr 03, 2025 pm 03:00 PM

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

distinct function usage distance function c usage tutorial distinct function usage distance function c usage tutorial Apr 03, 2025 pm 10:27 PM

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

How to apply snake nomenclature in C language? How to apply snake nomenclature in C language? Apr 03, 2025 pm 01:03 PM

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

Usage of releasesemaphore in C Usage of releasesemaphore in C Apr 04, 2025 am 07:54 AM

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.

Issues with Dev-C version Issues with Dev-C version Apr 03, 2025 pm 07:33 PM

Dev-C 4.9.9.2 Compilation Errors and Solutions When compiling programs in Windows 11 system using Dev-C 4.9.9.2, the compiler record pane may display the following error message: gcc.exe:internalerror:aborted(programcollect2)pleasesubmitafullbugreport.seeforinstructions. Although the final "compilation is successful", the actual program cannot run and an error message "original code archive cannot be compiled" pops up. This is usually because the linker collects

See all articles