Home Backend Development C++ In-depth analysis of C++ virtual functions: type erasure and polymorphic implementation

In-depth analysis of C++ virtual functions: type erasure and polymorphic implementation

Apr 29, 2024 am 08:54 AM
c++ virtual function

C virtual functions implement polymorphism and separate object type information through type erasure so that the compiler only recognizes public interfaces. The virtual pointer table stores virtual function addresses. When the base class pointer points to a derived class object, the derived class pointer pointing to the derived class virtual pointer table will replace the virtual pointer table pointed to by the base class pointer, thus achieving polymorphism.

C++ 虚拟函数深入剖析:类型擦除与多态实现

In-depth analysis of C virtual functions: type erasure and polymorphic implementation

In object-oriented programming (OOP), polymorphism State is a crucial idea, which allows us to use a set of public interfaces to operate objects of different classes. The C language implements polymorphism through virtual functions, which separate type information from objects and allow us to deal with different object types in a common way.

Type erasure

When the compiler encounters a virtual function, it type-erases it, which means it removes the object's type information . Therefore, when a base class pointer points to a derived class object, the compiler no longer knows the exact type of the object. Instead, it only knows about the object's public interface, which is the base class interface.

Polymorphic implementation

C virtual functions are implemented through a method table called a virtual pointer. Each class has a virtual pointer table (VTABLE), which lists the addresses of all virtual functions of the class. When a base class pointer points to a derived class object, the compiler replaces the original virtual pointer table pointed by the base class pointer with a derived class pointer pointing to a derived class VTABLE.

Practical Case

The following is an example of a C virtual function, which shows the application of type erasure and polymorphism in practice:

#include <iostream>

class Shape {
public:
    virtual void draw() = 0; // 纯虚函数
};

class Rectangle : public Shape {
public:
    void draw() override {
        std::cout << "Drawing a rectangle" << std::endl;
    }
};

class Circle : public Shape {
public:
    void draw() override {
        std::cout << "Drawing a circle" << std::endl;
    }
};

int main() {
    Shape* shapes[] = {new Rectangle(), new Circle()}; // 类型擦除: 数组中包含不同类型的 Shape 对象

    for (Shape* shape : shapes) {
        shape->draw(); // 多态: 无论对象的实际类型如何,都会调用正确的 draw() 方法
    }

    return 0;
}
Copy after login

In this example, we define a Shape base class and two derived classes Rectangle and Circle. Shape The base class contains a pure virtual function draw(), and the derived class implements this function. In the main() function, we create an array of Shape pointers pointing to the Rectangle and Circle objects. Since the draw() function is a virtual function, when we call draw() through the base class pointer, it will call the draw() method of the derived class , thus achieving polymorphism.

By understanding the type erasure and polymorphic implementation principles of virtual functions, we can have a deeper understanding of the core mechanism of OOP. This allows us to design flexible and extensible programs that can handle a variety of different object types.

The above is the detailed content of In-depth analysis of C++ virtual functions: type erasure and polymorphic implementation. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to implement the Strategy Design Pattern in C++? How to implement the Strategy Design Pattern in C++? Jun 06, 2024 pm 04:16 PM

The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

How to implement nested exception handling in C++? How to implement nested exception handling in C++? Jun 05, 2024 pm 09:15 PM

Nested exception handling is implemented in C++ through nested try-catch blocks, allowing new exceptions to be raised within the exception handler. The nested try-catch steps are as follows: 1. The outer try-catch block handles all exceptions, including those thrown by the inner exception handler. 2. The inner try-catch block handles specific types of exceptions, and if an out-of-scope exception occurs, control is given to the external exception handler.

How to use C++ template inheritance? How to use C++ template inheritance? Jun 06, 2024 am 10:33 AM

C++ template inheritance allows template-derived classes to reuse the code and functionality of the base class template, which is suitable for creating classes with the same core logic but different specific behaviors. The template inheritance syntax is: templateclassDerived:publicBase{}. Example: templateclassBase{};templateclassDerived:publicBase{};. Practical case: Created the derived class Derived, inherited the counting function of the base class Base, and added the printCount method to print the current count.

What is the role of char in C strings What is the role of char in C strings Apr 03, 2025 pm 03:15 PM

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Why does an error occur when installing an extension using PECL in a Docker environment? How to solve it? Why does an error occur when installing an extension using PECL in a Docker environment? How to solve it? Apr 01, 2025 pm 03:06 PM

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

How to handle cross-thread C++ exceptions? How to handle cross-thread C++ exceptions? Jun 06, 2024 am 10:44 AM

In multi-threaded C++, exception handling is implemented through the std::promise and std::future mechanisms: use the promise object to record the exception in the thread that throws the exception. Use a future object to check for exceptions in the thread that receives the exception. Practical cases show how to use promises and futures to catch and handle exceptions in different threads.

Four ways to implement multithreading in C language Four ways to implement multithreading in C language Apr 03, 2025 pm 03:00 PM

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

See all articles