Home Backend Development C++ Detailed explanation of C++ virtual functions: solving the mystery of polymorphic mechanism

Detailed explanation of C++ virtual functions: solving the mystery of polymorphic mechanism

Apr 29, 2024 am 08:57 AM
c++ Polymorphism

C Virtual functions are the key to achieving polymorphism, which allow derived classes to override the behavior of parent classes: declared as virtual functions and appearing in derived classes. When called, the compiler dynamically resolves the correct function version based on the object type. Pure virtual functions force derived classes to provide their own implementation to achieve polymorphism. Derived classes override the virtual functions of the base class to implement different behaviors.

C++ 虚拟函数详解:解答多态机制之谜

C Detailed explanation of virtual functions: solving the mystery of polymorphic mechanism

Introduction
Polymorphism Property is a cornerstone in object-oriented programming, allowing objects with the same parent class to be handled in different ways. Polymorphism in C is mainly achieved through virtual functions. This article will delve into virtual functions and demystify the polymorphic mechanism.

The essence of virtual functions
A virtual function is a special type of member function that is declared as a virtual function and appears in an object of a derived class. When a virtual function is called, the compiler dynamically resolves the correct function version at runtime based on the object's actual type. This feature allows derived classes to override the behavior of the parent class, thereby achieving polymorphism.

Syntax
The declaration syntax of a virtual function is as follows:

virtual 返回值类型 函数名(参数列表);
Copy after login

For example:

class Shape {
public:
    virtual double面积() const = 0; // 纯虚函数
};
Copy after login

Pure virtual function
Pure virtual function is a special virtual function that has no function body and must be implemented in a derived class. It forces derived classes to provide their own implementation, thus enforcing polymorphism.

Case
To show virtual functions in action, let us consider a shape abstract class Shape and its two derived classes Circle and Rectangle:

class Shape {
public:
    virtual double面积() const = 0; // 纯虚函数
};

class Circle : public Shape {
public:
    Circle(double radius) : _radius(radius) {}
    double面积() const override { return M_PI * _radius * _radius; }
private:
    double _radius;
};

class Rectangle : public Shape {
public:
    Rectangle(double width, double height) : _width(width), _height(height) {}
    double面积() const override { return _width * _height; }
private:
    double _width, _height;
};

int main() {
    Shape* circle = new Circle(5.0);
    Shape* rectangle = new Rectangle(10.0, 5.0);

    // 父类指针指向不同的派生类对象,但调用正确的面积函数版本
    double areaCircle = circle->面积();
    double areaRectangle = rectangle->面积();

    std::cout << "圆的面积:" << areaCircle << std::endl;
    std::cout << "矩形的面积:" << areaRectangle << std::endl;

    return 0;
}
Copy after login

In this example, the Shape class declares a pure virtual function Area(). Derived classes Circle and Rectangle respectively cover this function and implement their respective area calculations. In the main function, the derived class object is accessed through the parent class pointer and the area() function is called, but the correct version of the function is executed based on the actual type of the object.

The above is the detailed content of Detailed explanation of C++ virtual functions: solving the mystery of polymorphic mechanism. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Concurrency-safe design of data structures in C++ concurrent programming? Concurrency-safe design of data structures in C++ concurrent programming? Jun 05, 2024 am 11:00 AM

In C++ concurrent programming, the concurrency-safe design of data structures is crucial: Critical section: Use a mutex lock to create a code block that allows only one thread to execute at the same time. Read-write lock: allows multiple threads to read at the same time, but only one thread to write at the same time. Lock-free data structures: Use atomic operations to achieve concurrency safety without locks. Practical case: Thread-safe queue: Use critical sections to protect queue operations and achieve thread safety.

C++ object layout is aligned with memory to optimize memory usage efficiency C++ object layout is aligned with memory to optimize memory usage efficiency Jun 05, 2024 pm 01:02 PM

C++ object layout and memory alignment optimize memory usage efficiency: Object layout: data members are stored in the order of declaration, optimizing space utilization. Memory alignment: Data is aligned in memory to improve access speed. The alignas keyword specifies custom alignment, such as a 64-byte aligned CacheLine structure, to improve cache line access efficiency.

How to implement a custom comparator in C++ STL? How to implement a custom comparator in C++ STL? Jun 05, 2024 am 11:50 AM

Implementing a custom comparator can be accomplished by creating a class that overloads operator(), which accepts two parameters and indicates the result of the comparison. For example, the StringLengthComparator class sorts strings by comparing their lengths: Create a class and overload operator(), returning a Boolean value indicating the comparison result. Using custom comparators for sorting in container algorithms. Custom comparators allow us to sort or compare data based on custom criteria, even if we need to use custom comparison criteria.

How to implement the Strategy Design Pattern in C++? How to implement the Strategy Design Pattern in C++? Jun 06, 2024 pm 04:16 PM

The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

Similarities and Differences between Golang and C++ Similarities and Differences between Golang and C++ Jun 05, 2024 pm 06:12 PM

Golang and C++ are garbage collected and manual memory management programming languages ​​respectively, with different syntax and type systems. Golang implements concurrent programming through Goroutine, and C++ implements it through threads. Golang memory management is simple, and C++ has stronger performance. In practical cases, Golang code is simpler and C++ has obvious performance advantages.

What are the underlying implementation principles of C++ smart pointers? What are the underlying implementation principles of C++ smart pointers? Jun 05, 2024 pm 01:17 PM

C++ smart pointers implement automatic memory management through pointer counting, destructors, and virtual function tables. The pointer count keeps track of the number of references, and when the number of references drops to 0, the destructor releases the original pointer. Virtual function tables enable polymorphism, allowing specific behaviors to be implemented for different types of smart pointers.

How to copy a C++ STL container? How to copy a C++ STL container? Jun 05, 2024 am 11:51 AM

There are three ways to copy a C++ STL container: Use the copy constructor to copy the contents of the container to a new container. Use the assignment operator to copy the contents of the container to the target container. Use the std::copy algorithm to copy the elements in the container.

How to implement C++ multi-thread programming based on the Actor model? How to implement C++ multi-thread programming based on the Actor model? Jun 05, 2024 am 11:49 AM

C++ multi-threaded programming implementation based on the Actor model: Create an Actor class that represents an independent entity. Set the message queue where messages are stored. Defines the method for an Actor to receive and process messages from the queue. Create Actor objects and start threads to run them. Send messages to Actors via the message queue. This approach provides high concurrency, scalability, and isolation, making it ideal for applications that need to handle large numbers of parallel tasks.

See all articles