How many functions are there in std in c++
As of C 23, there are about 2000 functions in the standard library. These functions are distributed in different header files, such as <algorithm> for algorithms, <string> for string processing, <vector> for containers, <iostream> for input/output,
Number of functions in std in C
C The standard library (std) contains a large number of functions for performing various kind of task. In fact, the number of functions included in the standard library is constantly changing and varies depending on the specific implementation of C.
As of C 23, there are approximately 2000 functions in the standard library. These functions are distributed in different header files, for example:
-
<algorithm>
: algorithm -
<string>
: String processing -
<vector>
: container -
<iostream>
: input/output -
<chrono>
: Time and date
Using functions in the std library can greatly improve the efficiency and readability of C code. For example, you can use the functions in the <vector>
header file to manage dynamically sized arrays, or use the functions in the <algorithm>
header file to sort a container and search.
It is worth noting that the C standard library is constantly being updated and expanded, which means that more functions may be added in the future.
The above is the detailed content of How many functions are there in std in c++. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

Nested exception handling is implemented in C++ through nested try-catch blocks, allowing new exceptions to be raised within the exception handler. The nested try-catch steps are as follows: 1. The outer try-catch block handles all exceptions, including those thrown by the inner exception handler. 2. The inner try-catch block handles specific types of exceptions, and if an out-of-scope exception occurs, control is given to the external exception handler.

C++ template inheritance allows template-derived classes to reuse the code and functionality of the base class template, which is suitable for creating classes with the same core logic but different specific behaviors. The template inheritance syntax is: templateclassDerived:publicBase{}. Example: templateclassBase{};templateclassDerived:publicBase{};. Practical case: Created the derived class Derived, inherited the counting function of the base class Base, and added the printCount method to print the current count.

In multi-threaded C++, exception handling is implemented through the std::promise and std::future mechanisms: use the promise object to record the exception in the thread that throws the exception. Use a future object to check for exceptions in the thread that receives the exception. Practical cases show how to use promises and futures to catch and handle exceptions in different threads.

This article explores the quantitative trading functions of the three major exchanges, Binance, OKX and Gate.io, aiming to help quantitative traders choose the right platform. The article first introduces the concepts, advantages and challenges of quantitative trading, and explains the functions that excellent quantitative trading software should have, such as API support, data sources, backtesting tools and risk control functions. Subsequently, the quantitative trading functions of the three exchanges were compared and analyzed in detail, pointing out their advantages and disadvantages respectively, and finally giving platform selection suggestions for quantitative traders of different levels of experience, and emphasizing the importance of risk assessment and strategic backtesting. Whether you are a novice or an experienced quantitative trader, this article will provide you with valuable reference

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

Optimization techniques for C++ memory management include: using smart pointers (RAII), reducing frequent allocations, avoiding unnecessary copies, using low-level APIs (with caution), and analyzing memory usage. Through these techniques, such as using smart pointers and caching in image processing applications, memory usage and performance can be significantly optimized.

AI hardware design tools include: EDA tools such as Cadence Innovus and Synopsys IC Compiler for integrated circuit layout and verification. SoC design platforms such as Xilinx Vivado Design Suite and Intel FPGA SDK for FPGA and SoC development. Deep learning frameworks, such as TensorFlow and PyTorch, are used to build and train deep learning models. Hardware modeling and simulation tools, such as Synopsys VCS and ModelSim, are used to verify and simulate hardware designs. Other tools like Chisel,
