


Detailed explanation of C++ function inheritance: How to use 'base class pointer' and 'derived class pointer' in inheritance?
In function inheritance, use "base class pointer" and "derived class pointer" to understand the inheritance mechanism: when the base class pointer points to the derived class object, upward transformation is performed and only the base class members are accessed. When a derived class pointer points to a base class object, a downward cast is performed (unsafe) and must be used with caution.
C Detailed explanation of function inheritance: using "base class pointer" and "derived class pointer"
In object-oriented programming, inheritance is an important Concept that allows derived classes to inherit the properties and methods of a base class. When it comes to function inheritance, "base class pointer" and "derived class pointer" play a vital role in understanding the inheritance mechanism.
The base class pointer points to the derived class object
This situation occurs when the derived class object pointer is assigned to the base class pointer. The compiler performs an operation called an "upcast" in which specific properties and methods of the derived class are "hidden", leaving only the base class members.
class Base { public: void print() { cout << "Base class" << endl; } }; class Derived : public Base { public: void print() { cout << "Derived class" << endl; } }; int main() { Derived d; Base* b = &d; // 上向转型 b->print(); // 输出: Base class return 0; }
In the above example, we assign the address of the derived class Derived
object to the base class pointer b
. When b->print()
is called, it calls the print()
method of the base class Base
, not the print( )
method because b
is a pointer to type Base
.
The derived class pointer points to the base class object
This situation is uncommon, but it is possible. This happens when a base class object pointer is assigned to a derived class pointer. The compiler performs an operation called a "downcast" to make specific properties and methods of the derived class available again.
class Base { public: void print() { cout << "Base class" << endl; } }; class Derived : public Base { public: void print() { cout << "Derived class" << endl; } void derivedMethod() { cout << "Derived method" << endl; } }; int main() { Base b; Derived* d = reinterpret_cast<Derived*>(&b); // 下向转型(不安全!) d->print(); // 输出: Base class d->derivedMethod(); // 编译错误:无法访问派生类方法 return 0; }
In the above example, we used an unsafe downward cast to assign the address of the base class Base
object to the derived class pointer d
. When d->print()
is called, it calls the print()
method of the base class Base
because d
points to Object of type Base
. However, we cannot call derivedMethod()
of the derived class because the compiler cannot guarantee that d
points to a derived class object.
Use "downcasting" with caution
Upcasting is usually safe because the base class contains all the public members of the derived class. However, downcasting is unsafe because it relies on the programmer to ensure that the derived class pointer actually points to the derived class object. It is strongly recommended to use the "dynamic_cast" operator to perform safety checks before using downcasting.
When understanding function inheritance, it is very important to understand "base class pointer" and "derived class pointer". These concepts allow us to use inheritance in a flexible way while minimizing errors.
The above is the detailed content of Detailed explanation of C++ function inheritance: How to use 'base class pointer' and 'derived class pointer' in inheritance?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

In PHPOOP, self:: refers to the current class, parent:: refers to the parent class, static:: is used for late static binding. 1.self:: is used for static method and constant calls, but does not support late static binding. 2.parent:: is used for subclasses to call parent class methods, and private methods cannot be accessed. 3.static:: supports late static binding, suitable for inheritance and polymorphism, but may affect the readability of the code.

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.

Dev-C 4.9.9.2 Compilation Errors and Solutions When compiling programs in Windows 11 system using Dev-C 4.9.9.2, the compiler record pane may display the following error message: gcc.exe:internalerror:aborted(programcollect2)pleasesubmitafullbugreport.seeforinstructions. Although the final "compilation is successful", the actual program cannot run and an error message "original code archive cannot be compiled" pops up. This is usually because the linker collects
