Home Backend Development C++ Detailed explanation of C++ function inheritance: How to avoid the 'diamond inheritance' problem?

Detailed explanation of C++ function inheritance: How to avoid the 'diamond inheritance' problem?

May 02, 2024 am 11:45 AM
c++ function inheritance

Diamond inheritance problem: The problem that occurs when a derived class inherits the same function from multiple base classes at the same time cannot determine which function version to call. Solution: Virtual inheritance: Create a virtual table pointer of the base class to ensure that function calls always point to the most specific base class implementation. Practical case: The Cylinder class inherits from Circle and Rectangle, uses virtual inheritance to avoid diamond inheritance, and ensures that the getArea() function implementation of the Cylinder class is always called.

C++ 函数继承详解:如何避免“钻石继承”问题?

Detailed explanation of C function inheritance: dealing with "diamond inheritance"

Introduction

Function inheritance is a powerful feature in C that allows derived classes to access and reuse functions of a base class. However, when multiple base classes have the same functions, a problem called "diamond inheritance" can arise. This article will discuss diamond inheritance and its solutions, and provide practical cases.

Diamond inheritance

Diamond inheritance occurs when a derived class inherits the same function from two or more base classes at the same time. This results in the inability to determine which function version was called in the derived class.

class Base1 {
public:
    void print() {
        std::cout << "Base1 print" << std::endl;
    }
};

class Base2 {
public:
    void print() {
        std::cout << "Base2 print" << std::endl;
    }
};

class Derived : public Base1, public Base2 {
public:
    void print() {
        // 调用哪个基类的 print() 函数?
    }
};
Copy after login

In the above example, the Derived class inherits from Base1 and Base2, both base classes have the same print() function. When Derived::print() is called, it cannot be determined whether Base1::print() or Base2::print() is called.

Avoid diamond inheritance

A common solution to avoid diamond inheritance is to use virtual inheritance. Virtual inheritance creates a vtable pointer to the base class instead of copying the base class object. This ensures that function calls to a derived class always point to the most specific base class implementation.

class Base1 {
public:
    virtual void print() {
        std::cout << "Base1 print" << std::endl;
    }
};

class Base2 {
public:
    virtual void print() {
        std::cout << "Base2 print" << std::endl;
    }
};

class Derived : public virtual Base1, public virtual Base2 {
public:
    void print() override {
        std::cout << "Derived print" << std::endl;
    }
};
Copy after login

In the above example, Base1 and Base2 use virtual inheritance. This ensures that Derived::print() will always call the implementation of the Derived class.

Practical case

Consider an example of calculating the area of ​​a graphic. We have a base class Shape that defines the getArea() function for calculating area. We also have two derived classes, Circle and Rectangle, which provide shape-specific area calculations.

class Shape {
public:
    virtual double getArea() = 0;
};

class Circle : public Shape {
public:
    Circle(double radius) : _radius(radius) {}
    double getArea() override {
        return 3.14 * _radius * _radius;
    }
private:
    double _radius;
};

class Rectangle : public Shape {
public:
    Rectangle(double width, double height) : _width(width), _height(height) {}
    double getArea() override {
        return _width * _height;
    }
private:
    double _width;
    double _height;
};
Copy after login

To implement the "sleeve" shape, we created a derived class Cylinder, which inherits from Circle and Rectangle. However, since both Circle and Rectangle have getArea() functions, Cylinder will face diamond inheritance issues.

class Cylinder : public Circle, public Rectangle {
public:
    Cylinder(double radius, double height) : Circle(radius), Rectangle(radius, height) {}
};
Copy after login

To avoid diamond inheritance, we use virtual inheritance:

class Cylinder : public virtual Circle, public virtual Rectangle {
public:
    Cylinder(double radius, double height) : Circle(radius), Rectangle(radius, height) {}
};
Copy after login

Now, the getArea() function of the Cylinder class is always called on its derived The implementation of the most specific class (i.e. Cylinder).

The above is the detailed content of Detailed explanation of C++ function inheritance: How to avoid the 'diamond inheritance' problem?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to implement the Strategy Design Pattern in C++? How to implement the Strategy Design Pattern in C++? Jun 06, 2024 pm 04:16 PM

The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

How to implement nested exception handling in C++? How to implement nested exception handling in C++? Jun 05, 2024 pm 09:15 PM

Nested exception handling is implemented in C++ through nested try-catch blocks, allowing new exceptions to be raised within the exception handler. The nested try-catch steps are as follows: 1. The outer try-catch block handles all exceptions, including those thrown by the inner exception handler. 2. The inner try-catch block handles specific types of exceptions, and if an out-of-scope exception occurs, control is given to the external exception handler.

How to use C++ template inheritance? How to use C++ template inheritance? Jun 06, 2024 am 10:33 AM

C++ template inheritance allows template-derived classes to reuse the code and functionality of the base class template, which is suitable for creating classes with the same core logic but different specific behaviors. The template inheritance syntax is: templateclassDerived:publicBase{}. Example: templateclassBase{};templateclassDerived:publicBase{};. Practical case: Created the derived class Derived, inherited the counting function of the base class Base, and added the printCount method to print the current count.

What is the role of char in C strings What is the role of char in C strings Apr 03, 2025 pm 03:15 PM

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Why does an error occur when installing an extension using PECL in a Docker environment? How to solve it? Why does an error occur when installing an extension using PECL in a Docker environment? How to solve it? Apr 01, 2025 pm 03:06 PM

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

How to handle cross-thread C++ exceptions? How to handle cross-thread C++ exceptions? Jun 06, 2024 am 10:44 AM

In multi-threaded C++, exception handling is implemented through the std::promise and std::future mechanisms: use the promise object to record the exception in the thread that throws the exception. Use a future object to check for exceptions in the thread that receives the exception. Practical cases show how to use promises and futures to catch and handle exceptions in different threads.

Four ways to implement multithreading in C language Four ways to implement multithreading in C language Apr 03, 2025 pm 03:00 PM

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

See all articles