Home Backend Development C++ C++ Memory Management: Memory Allocation Strategies

C++ Memory Management: Memory Allocation Strategies

May 02, 2024 pm 04:39 PM
c++ memory allocation

In C, choosing an appropriate memory allocation strategy is crucial to improving application performance and reliability. Common strategies include: 1. malloc/realloc: classic allocator that manages memory manually; 2. new/delete: C operator, which encapsulates malloc/realloc and automatically releases memory; 3. Smart pointers: avoid memory leaks and wild pointers ; 4. Memory pool: pre-allocate a fixed-size object group; 5. Garbage collection: automatically recycle objects that are no longer used (not commonly used in C).

C++ 内存管理:内存分配策略

C Memory Management: Memory Allocation Strategies

In C, memory management is a vital topic. Choosing an appropriate memory allocation strategy can significantly improve the performance and reliability of your application. This tutorial discusses common memory allocation strategies in C and provides practical examples.

Basic principles of memory allocation

In C, memory allocation is done by using the new operator. It requests a block of memory from the heap to store the newly created object. The object's life cycle ends after calling the delete operator, which releases the allocated memory.

Common memory allocation strategies

  • malloc/realloc: Classic memory allocator, manually manage memory. It requires explicit freeing of allocated memory, but provides fine-grained control.
  • new/delete: C operator, which encapsulates malloc/realloc and provides automatic memory release.
  • Smart pointers: Such as std::unique_ptr and std::shared_ptr, manage the memory life cycle of objects to avoid memory leaks and wild pointers.
  • Memory pool: Pre-allocate a set of fixed-size objects to avoid allocating and releasing them one by one from the heap.
  • Garbage collection: Automatically recycling objects that are no longer used is common in other languages, but not commonly used in C.

Practical case

Consider the following scenario of allocating a large integer array:

int* arr = new int[1000000];  // 分配 100 万个整数
Copy after login

Use the new operator allocated continuously. However, this may lead to memory fragmentation because the memory after an object is released is not always immediately available for reuse. To alleviate this problem, consider using memory pool.

class IntPool {
public:
    IntPool() {
        // 预先分配 10 个内存块,每个块包含 10000 个整数
        for (int i = 0; i < 10; i++) {
            blocks.push_back(new int[10000]);
        }
        current_block = blocks.begin();
    }

    int* allocate(int count) {
        // 从当前内存块分配
        if (*current_block + count <= blocks[0] + 10000) {
            int* ptr = *current_block;
            *current_block += count;
            return ptr;
        } else {
            // 切换到下一个内存块
            current_block++;
            return allocate(count);
        }
    }

    void deallocate(int* ptr, int count) {
        // 释放内存,但保留内存块
        *current_block = ptr;
    }

private:
    std::vector<int*> blocks;
    std::vector<int*>::iterator current_block;
};

int main() {
    IntPool pool;
    int* arr = pool.allocate(1000000);

    // 使用数组

    pool.deallocate(arr, 1000000);
}
Copy after login

By using IntPool, we pre-allocate 10 memory blocks. When an array is allocated, it is allocated from the current block and then switches to the next block if necessary. This approach reduces memory fragmentation and improves application performance.

The above is the detailed content of C++ Memory Management: Memory Allocation Strategies. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to implement the Strategy Design Pattern in C++? How to implement the Strategy Design Pattern in C++? Jun 06, 2024 pm 04:16 PM

The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

Similarities and Differences between Golang and C++ Similarities and Differences between Golang and C++ Jun 05, 2024 pm 06:12 PM

Golang and C++ are garbage collected and manual memory management programming languages ​​respectively, with different syntax and type systems. Golang implements concurrent programming through Goroutine, and C++ implements it through threads. Golang memory management is simple, and C++ has stronger performance. In practical cases, Golang code is simpler and C++ has obvious performance advantages.

How to implement nested exception handling in C++? How to implement nested exception handling in C++? Jun 05, 2024 pm 09:15 PM

Nested exception handling is implemented in C++ through nested try-catch blocks, allowing new exceptions to be raised within the exception handler. The nested try-catch steps are as follows: 1. The outer try-catch block handles all exceptions, including those thrown by the inner exception handler. 2. The inner try-catch block handles specific types of exceptions, and if an out-of-scope exception occurs, control is given to the external exception handler.

How to iterate over a C++ STL container? How to iterate over a C++ STL container? Jun 05, 2024 pm 06:29 PM

To iterate over an STL container, you can use the container's begin() and end() functions to get the iterator range: Vector: Use a for loop to iterate over the iterator range. Linked list: Use the next() member function to traverse the elements of the linked list. Mapping: Get the key-value iterator and use a for loop to traverse it.

How to use C++ template inheritance? How to use C++ template inheritance? Jun 06, 2024 am 10:33 AM

C++ template inheritance allows template-derived classes to reuse the code and functionality of the base class template, which is suitable for creating classes with the same core logic but different specific behaviors. The template inheritance syntax is: templateclassDerived:publicBase{}. Example: templateclassBase{};templateclassDerived:publicBase{};. Practical case: Created the derived class Derived, inherited the counting function of the base class Base, and added the printCount method to print the current count.

What are the common applications of C++ templates in actual development? What are the common applications of C++ templates in actual development? Jun 05, 2024 pm 05:09 PM

C++ templates are widely used in actual development, including container class templates, algorithm templates, generic function templates and metaprogramming templates. For example, a generic sorting algorithm can sort arrays of different types of data.

How to handle cross-thread C++ exceptions? How to handle cross-thread C++ exceptions? Jun 06, 2024 am 10:44 AM

In multi-threaded C++, exception handling is implemented through the std::promise and std::future mechanisms: use the promise object to record the exception in the thread that throws the exception. Use a future object to check for exceptions in the thread that receives the exception. Practical cases show how to use promises and futures to catch and handle exceptions in different threads.

How to access elements in C++ STL container? How to access elements in C++ STL container? Jun 05, 2024 pm 06:04 PM

How to access elements in C++ STL container? There are several ways to do this: Traverse a container: Use an iterator Range-based for loop to access specific elements: Use an index (subscript operator []) Use a key (std::map or std::unordered_map)

See all articles