C++ function exception handling skills: improve code maintainability
C Exception handling tips to improve code maintainability: Use standard exception types to ensure compatibility and useful information. Pass exception information to assist problem understanding and debugging. Create custom exceptions to provide more detailed error information and enhance organization. Use a try-catch block to catch exceptions and rethrow them under special circumstances.
C function exception handling skills: improve code maintainability
In C, exception handling is to handle unexpected situations and ensure A key mechanism for code robustness. This article will explore some advanced exception handling techniques to improve the maintainability of your code.
Use standard exception types
The C standard library provides various predefined exception types, including std::exception
, std::logic_error
and std::runtime_error
. Using these types ensures that your code is compatible with other C code libraries and provides useful error information.
Passing exception information
Exception objects can contain error descriptions or other relevant information, which is very important for understanding and debugging problems. This information can be accessed using the std::exception::what()
method.
Create custom exceptions
For application-specific exceptions, you can create custom exception types. This allows for more detailed error information and enhanced code organization.
class MyCustomException : public std::exception { public: MyCustomException(const std::string& message) : std::exception(message.c_str()) {} };
Catch exceptions
Exceptions can be caught using the try-catch
block.
try { // 代码可能会引发异常 } catch (std::exception& e) { // 处理异常 }
Rethrow exceptions
Caught exceptions can be rethrown under special circumstances.
try { // 代码可能会引发异常 } catch (std::exception& e) { if (e.what() != "特定错误") { // 重新抛出异常 throw; } }
Practical case
Consider a function that reads file data:
std::string read_file(const std::string& filename) { std::ifstream file(filename); if (!file.is_open()) { throw std::runtime_error("无法打开文件"); } std::string data; while (std::getline(file, data)) {} return data; }
Using exception handling, we can ensure that the file is provided when the file fails to open. Meaningful error message:
try { std::string data = read_file(filename); // 使用数据 } catch (std::runtime_error& e) { std::cerr << "错误: " << e.what() << std::endl; }
The above is the detailed content of C++ function exception handling skills: improve code maintainability. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



In PHP, exception handling is achieved through the try, catch, finally, and throw keywords. 1) The try block surrounds the code that may throw exceptions; 2) The catch block handles exceptions; 3) Finally block ensures that the code is always executed; 4) throw is used to manually throw exceptions. These mechanisms help improve the robustness and maintainability of your code.

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

There is no function named "sum" in the C language standard library. "sum" is usually defined by programmers or provided in specific libraries, and its functionality depends on the specific implementation. Common scenarios are summing for arrays, and can also be used in other data structures, such as linked lists. In addition, "sum" is also used in fields such as image processing and statistical analysis. An excellent "sum" function should have good readability, robustness and efficiency.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.
