Home > Backend Development > C++ > body text

Detailed explanation of C++ function optimization: How to optimize multi-threaded performance?

WBOY
Release: 2024-05-03 21:42:01
Original
618 people have browsed it

Key techniques for optimizing the performance of multi-threaded C functions include: compiler optimization flags (such as -O3 and -parallel) concurrent containers (such as std::vector and std::list) synchronization primitives (such as locks and atomic variables) Smart pointers (such as std::shared_ptr and std::unique_ptr) avoid lock contention (such as by using fine-grained locks or lock-free data structures)

C++ 函数优化详解:如何优化多线程性能?

Detailed explanation of C function optimization : How to optimize multi-threaded performance?

In multi-threaded programming, optimizing the performance of functions is crucial. This article will explore various techniques for optimizing multi-threaded performance of C functions and provide practical examples to illustrate.

Compiler optimization flags

The compiler provides a variety of optimization flags that can help optimize multi-threaded code. For example, the -O3 flag enables GCC's advanced optimizations, while the -parallel flag instructs the compiler to use parallelism.

Practical case:

// 启用优化标志
#pragma GCC optimize("O3", "-parallel")

// 优化函数
int sum(const std::vector<int>& numbers) {
  int result = 0;
  for (int number : numbers) {
    result += number;
  }
  return result;
}
Copy after login

Concurrent container

The C standard library provides concurrent containers, such as std::vector and std::list, these containers are optimized and can be safely used in multi-threaded scenarios.

Practical case:

// 使用并发容器
std::vector<int> numbers(1000000);
std::atomic<int> result;

// 并发地累加数字
std::thread threads[8];
for (int i = 0; i < 8; i++) {
  threads[i] = std::thread([&numbers, &result, i]() {
    for (int j = i * numbers.size() / 8; j < (i + 1) * numbers.size() / 8; j++) {
      result += numbers[j];
    }
  });
}

for (int i = 0; i < 8; i++) {
  threads[i].join();
}

// 获取最终结果
int final_result = result.load();
Copy after login

Synchronization primitives

Synchronization primitives, such as locks and atomic variables, are used to coordinate access between multiple threads . Appropriate use of these primitives can ensure data consistency and avoid race conditions.

Practical case:

// 使用互斥量保护共享数据
std::mutex m;
int shared_data = 0;

// 使用互斥量并发地更新共享数据
std::thread threads[8];
for (int i = 0; i < 8; i++) {
  threads[i] = std::thread([&m, &shared_data, i]() {
    for (int j = 0; j < 1000; j++) {
      std::lock_guard<std::mutex> lock(m);
      shared_data += i;
    }
  });
}

for (int i = 0; i < 8; i++) {
  threads[i].join();
}

// 获取最终结果
int final_result = shared_data;
Copy after login

Smart pointer

Smart pointer, such as std::shared_ptr and std: :unique_ptr, which can automatically manage dynamically allocated memory. They support safe sharing and release in multi-threaded scenarios.

Practical case:

// 使用智能指针共享对象
std::shared_ptr<MyObject> object = std::make_shared<MyObject>();

// 在多个线程中并发访问共享对象
std::thread threads[8];
for (int i = 0; i < 8; i++) {
  threads[i] = std::thread([&object, i]() {
    std::cout << object->getValue() << std::endl;
  });
}

for (int i = 0; i < 8; i++) {
  threads[i].join();
}
Copy after login

Avoid lock contention

Lock contention refers to the situation where multiple threads frequently compete for the same lock. Lock contention can be avoided by using fine-grained locks or lock-free data structures.

Practical case:

// 使用细粒度锁避免锁争用
std::mutex locks[10];
int shared_data[10];

// 并发地更新共享数据,每个数据块使用自己的锁
std::thread threads[8];
for (int i = 0; i < 8; i++) {
  threads[i] = std::thread([&locks, &shared_data, i]() {
    for (int j = 0; j < 1000; j++) {
      std::lock_guard<std::mutex> lock(locks[i]);
      shared_data[i] += i;
    }
  });
}

for (int i = 0; i < 8; i++) {
  threads[i].join();
}

// 获取最终结果
int final_result = 0;
for (int i = 0; i < 10; i++) {
  final_result += shared_data[i];
}
Copy after login

The above is the detailed content of Detailed explanation of C++ function optimization: How to optimize multi-threaded performance?. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template