The principle of golang function and pipeline communication
Functions and pipes in Go language are used together to achieve inter-process communication. Functions can pass pipes as parameters to send or receive data through pipes. Pipes are unbuffered channels that can be used to send and receive data between goroutines and support both undirected and directed pipes. The
Principles and practices of function and pipeline communication in Go language
Introduction
Function and pipeline are the core components of Go language A powerful tool for inter-process communication (IPC) in . This article will delve into how they work and provide practical examples showing how to communicate using them.
Function
Function is a first-class citizen in Go language. It can pass data as parameters and return results. When a goroutine (lightweight thread) calls a function, the function runs within the goroutine's scope. Variables and resources can be passed between function calls.
func add(x, y int) int { return x + y } func main() { result := add(10, 20) fmt.Println(result) // 输出:30 }
Pipelines
Pipes are unbuffered channels used to send and receive data between goroutines. Pipes can be undirected or directed. Undirected pipes allow data to be sent in both directions between two goroutines, while directed pipes only allow one-way data flow.
// 无向管道 unbufferedChan := make(chan int) // 有向管道 bufferedChan := make(chan int, 10) // 缓冲区大小为 10
Function and pipe communication
Functions and pipes can be used together for inter-process communication. By passing a pipe as a function parameter, a function can send or receive data through a pipe.
Send data
To send data to a pipe, you can use the <-
operator (send operator). <-
The operator sends data to the pipe and blocks the sending goroutine until the data is received.
func sendData(ch chan int) { ch <- 100 }
Receive data
To receive data from a pipe, you can use the <-
operator (receive operator). <-
The operator receives data from the pipe and blocks the receiving goroutine until the data is available.
func receiveData(ch chan int) { data := <-ch fmt.Println(data) // 输出:100 }
Practical case: Concurrent computation in pipelines
The following example shows how to use pipelines for concurrent computation:
package main import ( "fmt" "sync" ) func main() { // 创建无缓冲管道 ch := make(chan int) var wg sync.WaitGroup // 创建 goroutine 发送数据到管道 wg.Add(1) go func() { defer wg.Done() for i := 0; i < 10; i++ { ch <- i } close(ch) // 关闭管道,表示没有更多数据 }() // 创建 goroutine 从管道接收数据 wg.Add(1) go func() { defer wg.Done() for data := range ch { fmt.Println(data) } }() // 等待所有 goroutine 完成 wg.Wait() }
In this example, We send a range to the pipe, then in another goroutine we receive and print the data from the pipe. Unbuffered pipes ensure that send and receive operations are synchronized. Pipes provide a communication mechanism between two goroutines, enabling concurrent computation.
The above is the detailed content of The principle of golang function and pipeline communication. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Reading and writing files safely in Go is crucial. Guidelines include: Checking file permissions Closing files using defer Validating file paths Using context timeouts Following these guidelines ensures the security of your data and the robustness of your application.

The difference between the GoLang framework and the Go framework is reflected in the internal architecture and external features. The GoLang framework is based on the Go standard library and extends its functionality, while the Go framework consists of independent libraries to achieve specific purposes. The GoLang framework is more flexible and the Go framework is easier to use. The GoLang framework has a slight advantage in performance, and the Go framework is more scalable. Case: gin-gonic (Go framework) is used to build REST API, while Echo (GoLang framework) is used to build web applications.

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

Using predefined time zones in Go includes the following steps: Import the "time" package. Load a specific time zone through the LoadLocation function. Use the loaded time zone in operations such as creating Time objects, parsing time strings, and performing date and time conversions. Compare dates using different time zones to illustrate the application of the predefined time zone feature.

Which libraries in Go are developed by large companies or well-known open source projects? When programming in Go, developers often encounter some common needs, ...

Automatic deletion of Golang generic function type constraints in VSCode Users may encounter a strange problem when writing Golang code using VSCode. when...

Efficiently handle concurrency security issues in multi-process log writing. Multiple processes write the same log file at the same time. How to ensure concurrency is safe and efficient? This is a...
