


C++ concurrent programming: how to perform task scheduling and thread pool management?
Task scheduling and thread pool management are the keys to improving efficiency and scalability in C concurrent programming. Task scheduling: Use std::thread to create new threads. Use the join() method to join a thread. Thread pool management: Create a ThreadPool object and specify the number of threads. Add tasks using the add_task() method. Call the join() or stop() method to shut down the thread pool.
C Concurrent Programming: Task Scheduling and Thread Pool Management
Introduction
In concurrent programming, task scheduling and thread pool management are crucial to improve the efficiency and scalability of applications. This article walks you through the concepts of task scheduling in C and shows how to manage thread pools using std::thread
and std::mutex
from the C 11 standard.
Task Scheduling
Task scheduling involves allocating and executing asynchronous tasks. In C, you can use std::thread
to create a new thread:
std::thread t([]() { // 执行异步任务 });
To join a thread, use the join()
method:
t.join();
Thread pool management
The thread pool is a pre-created and managed collection of threads that can be used to process tasks. Using a thread pool avoids the overhead of repeatedly creating and destroying threads.
Here's how to create and manage a thread pool in C:
class ThreadPool { public: ThreadPool(int num_threads) { for (int i = 0; i < num_threads; i++) { threads_.emplace_back(std::thread([this]() { this->thread_loop(); })); } } void thread_loop() { while (true) { std::function<void()> task; { std::lock_guard<std::mutex> lock(mtx_); if (tasks_.empty()) { continue; } task = tasks_.front(); tasks_.pop(); } task(); } } void add_task(std::function<void()> task) { std::lock_guard<std::mutex> lock(mtx_); tasks_.push(task); } void stop() { std::unique_lock<std::mutex> lock(mtx_); stop_ = true; } ~ThreadPool() { stop(); for (auto& t : threads_) { t.join(); } } private: std::vector<std::thread> threads_; std::queue<std::function<void()>> tasks_; std::mutex mtx_; bool stop_ = false; };
To use a thread pool, you can perform the following steps:
- Create a thread pool object, Specify the number of threads to create.
- Use the
add_task()
method to add tasks to the thread pool. - Call the
join()
orstop()
method to close the thread pool and wait for all tasks to complete.
Practical case
The following is an example of using a thread pool to perform concurrent tasks on a multi-core system:
#include <iostream> #include <vector> #include "thread_pool.h" int main() { ThreadPool pool(4); std::vector<std::future<int>> futures; for (int i = 0; i < 10000; i++) { futures.push_back(pool.add_task([i]() { return i * i; })); } for (auto& f : futures) { std::cout << f.get() << std::endl; } return 0; }
Conclusion
Concurrent tasks in C can be effectively managed by using std::thread
and thread pools. Whether it's scientific computing on multi-core systems or web services that need to handle a large number of requests, thread scheduling and thread pool management are key to improving code efficiency and scalability.
The above is the detailed content of C++ concurrent programming: how to perform task scheduling and thread pool management?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.
