


C++ concurrent programming: How to deal with exception handling in a multi-threaded environment?
The Multithreaded C Exception Handling Guide proposes four key approaches: Use mutexes or atomic operations to ensure thread safety in exception handling. Leverage thread-local storage (TLS) to store exception information for each thread. Implement asynchronous tasks and exception propagation through std::async and std::future. Collect exception information through TLS and the main thread to implement exception handling in multi-threaded file downloads.
C Concurrent Programming: A Practical Guide to Multi-Threaded Exception Handling
In a multi-threaded environment, exception handling is particularly critical. It can ensure that the application will It can still operate normally under any circumstances. This article will introduce how to handle exceptions in a multi-threaded environment in C and demonstrate it through a practical case.
Exception synchronization and thread safety
In a multi-threaded environment, the throwing and handling of exceptions need to be synchronized to ensure that no data competition or deadlock occurs. You can use mutexes or atomic operations to ensure thread safety in exception handling.
// 使用互斥量实现线程安全异常处理 std::mutex m; void handle_error() { std::unique_lock<std::mutex> lock(m); // 处理异常 }
Thread-Local Storage
Thread-local storage (TLS) can provide a separate storage area for each thread to store data specific to that thread, including Exception information.
// 使用 TLS 存储每个线程的异常信息 __thread std::exception_ptr exception_ptr; void set_exception(const std::exception& e) { exception_ptr = std::make_exception_ptr(e); }
Exception propagation and handling
In a multi-threaded environment, exceptions can be propagated from one thread to another. You can use std::async
and std::future
to execute tasks asynchronously and handle exceptions thrown in threads.
// 在异步任务中处理异常 auto f = std::async(std::launch::async, []() { try { // 执行任务 } catch (const std::exception& e) { std::cout << "Exception caught in async task: " << e.what() << std::endl; } }); // 在主线程中检查异常 if (f.get()) { std::cout << "Async task completed successfully" << std::endl; } else { std::cout << "Async task failed with exception" << std::endl; }
Practical case: multi-threaded file download
Consider a multi-threaded file download application where each thread is responsible for downloading a part of the file. To handle exceptions, we can use TLS to store exception information for download failures and collect this information in the main thread.
#include <thread> #include <vector> #include <iostream> #include <fstream> using namespace std; // TLS 存储下载失败的异常信息 __thread exception_ptr exception_ptr; // 下载文件的线程函数 void download_file(const string& url, const string& path) { try { ofstream file(path, ios::binary); // 略:从 URL 下载数据并写入文件 } catch (const exception& e) { exception_ptr = make_exception_ptr(e); } } // 主线程函数 int main() { // 创建下载线程 vector<thread> threads; for (const auto& url : urls) { string path = "file_" + to_string(i) + ".txt"; threads.emplace_back(download_file, url, path); } // 加入线程并收集异常信息 for (auto& thread : threads) { thread.join(); if (exception_ptr) { try { rethrow_exception(exception_ptr); } catch (const exception& e) { cerr << "File download failed: " << e.what() << endl; } } } return 0; }
Through these methods, we can effectively handle exceptions in C multi-threaded environment and ensure the robustness and stability of the application.
The above is the detailed content of C++ concurrent programming: How to deal with exception handling in a multi-threaded environment?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.
