Home > Web Front-end > JS Tutorial > JavaScript solves the third-order magic square (nine-square grid)_javascript skills

JavaScript solves the third-order magic square (nine-square grid)_javascript skills

WBOY
Release: 2016-05-16 16:02:41
Original
1504 people have browsed it

Puzzle: Third-order magic square. Try to fill in the 9 different integers from 1 to 9 into a 3×3 table so that the sum of the numbers in each row, column and diagonal is the same.

Strategy: Exhaustive search. List all integer padding scenarios, then filter.

The highlight is the design of the recursive function getPermutation. At the end of the article, several non-recursive algorithms are given

// 递归算法,很巧妙,但太费资源
function getPermutation(arr) {
  if (arr.length == 1) {
    return [arr];
  }
  var permutation = [];
  for (var i = 0; i < arr.length; i++) {
    var firstEle = arr[i];         //取第一个元素
    var arrClone = arr.slice(0);      //复制数组
    arrClone.splice(i, 1);         //删除第一个元素,减少数组规模
    var childPermutation = getPermutation(arrClone);//递归
    for (var j = 0; j < childPermutation.length; j++) {
      childPermutation[j].unshift(firstEle);   //将取出元素插入回去
    }
    permutation = permutation.concat(childPermutation);
  }
  return permutation;
}

function validateCandidate(candidate) {
  var sum = candidate[0] + candidate[1] + candidate[2];
  for (var i = 0; i < 3; i++) {
    if (!(sumOfLine(candidate, i) == sum && sumOfColumn(candidate, i) == sum)) {
      return false;
    }
  }
  if (sumOfDiagonal(candidate, true) == sum && sumOfDiagonal(candidate, false) == sum) {
    return true;
  }
  return false;
}
function sumOfLine(candidate, line) {
  return candidate[line * 3] + candidate[line * 3 + 1] + candidate[line * 3 + 2];
}
function sumOfColumn(candidate, col) {
  return candidate[col] + candidate[col + 3] + candidate[col + 6];
}
function sumOfDiagonal(candidate, isForwardSlash) {
  return isForwardSlash &#63; candidate[2] + candidate[4] + candidate[6] : candidate[0] + candidate[4] + candidate[8];
}

var permutation = getPermutation([1, 2, 3, 4, 5, 6, 7, 8, 9]);
var candidate;
for (var i = 0; i < permutation.length; i++) {
  candidate = permutation[i];
  if (validateCandidate(candidate)) {
    break;
  } else {
    candidate = null;
  }
}
if (candidate) {
  console.log(candidate);
} else {
  console.log('No valid result found');
}

//求模(非递归)全排列算法

/*
算法的具体示例:
*求4个元素["a", "b", "c", "d"]的全排列, 共循环4!=24次,可从任意>=0的整数index开始循环,每次累加1,直到循环完index+23后结束;
*假设index=13(或13+24,13+224,13+3*24…),因为共4个元素,故迭代4次,则得到的这一个排列的过程为:
*第1次迭代,13/1,商=13,余数=0,故第1个元素插入第0个位置(即下标为0),得["a"];
*第2次迭代,13/2, 商=6,余数=1,故第2个元素插入第1个位置(即下标为1),得["a", "b"];
*第3次迭代,6/3, 商=2,余数=0,故第3个元素插入第0个位置(即下标为0),得["c", "a", "b"];
*第4次迭代,2/4,商=0,余数=2, 故第4个元素插入第2个位置(即下标为2),得["c", "a", "d", "b"];
*/

function perm(arr) {
  var result = new Array(arr.length);
  var fac = 1;
  for (var i = 2; i <= arr.length; i++)  //根据数组长度计算出排列个数
    fac *= i;
  for (var index = 0; index < fac; index++) { //每一个index对应一个排列
    var t = index;
    for (i = 1; i <= arr.length; i++) {   //确定每个数的位置
      var w = t % i;
      for (var j = i - 1; j > w; j--)   //移位,为result[w]留出空间
        result[j] = result[j - 1];
      result[w] = arr[i - 1];
      t = Math.floor(t / i);
    }
    if (validateCandidate(result)) {
      console.log(result);
      break;
    }
  }
}
perm([1, 2, 3, 4, 5, 6, 7, 8, 9]);
//很巧妙的回溯算法,非递归解决全排列

function seek(index, n) {
  var flag = false, m = n; //flag为找到位置排列的标志,m保存正在搜索哪个位置,index[n]为元素(位置编码)
  do {
    index[n]++;    //设置当前位置元素
    if (index[n] == index.length) //已无位置可用
      index[n--] = -1; //重置当前位置,回退到上一个位置
    else if (!(function () {
        for (var i = 0; i < n; i++)  //判断当前位置的设置是否与前面位置冲突
          if (index[i] == index[n]) return true;//冲突,直接回到循环前面重新设置元素值
        return false;  //不冲突,看当前位置是否是队列尾,是,找到一个排列;否,当前位置后移
      })()) //该位置未被选择
      if (m == n) //当前位置搜索完成
        flag = true;
      else
        n++;  //当前及以前的位置元素已经排好,位置后移
  } while (!flag && n >= 0)
  return flag;
}
function perm(arr) {
  var index = new Array(arr.length);
  for (var i = 0; i < index.length; i++)
    index[i] = -1;
  for (i = 0; i < index.length - 1; i++)
    seek(index, i);  //初始化为1,2,3,...,-1 ,最后一位元素为-1;注意是从小到大的,若元素不为数字,可以理解为其位置下标
  while (seek(index, index.length - 1)) {
    var temp = [];
    for (i = 0; i < index.length; i++)
      temp.push(arr[index[i]]);
    if (validateCandidate(temp)) {
      console.log(temp);
      break;
    }
  }
}
perm([1, 2, 3, 4, 5, 6, 7, 8, 9]);

Copy after login

/*
Full permutation (non-recursive ordering) algorithm
1. Create a position array, that is, arrange the positions. After the arrangement is successful, it is converted into an arrangement of elements;
2. Find the complete arrangement according to the following algorithm:
Suppose P is a complete arrangement of 1 to n (position numbers): p = p1,p2...pn = p1,p2...pj-1,pj,pj 1...pk-1,pk,pk 1 ...pn
(1) Starting from the end of the arrangement, find the first index j that is smaller than the right position number (j is calculated from the beginning), that is, j = max{i | pi < pi 1}
(2) Among the position numbers to the right of pj, find the index k of the smallest position number among all position numbers larger than pj, that is, k = max{i | pi > pj}
The position numbers to the right of pj increase from right to left, so k is the largest index among all position numbers greater than pj
(3)Exchange pj and pk
(4) Then flip pj 1...pk-1,pk,pk 1...pn to get the arrangement p' = p1,p2...pj-1,pj,pn...pk 1,pk,pk -1...pj 1
(5) p' is the next permutation of permutation p

For example:
24310 is a permutation of position numbers 0 to 4. The steps to find its next permutation are as follows:
(1) Find the first number 2 in the arrangement that is smaller than the number on the right from right to left;
(2) Find the smallest number 3 that is greater than 2 among the numbers after the number;
(3) Swap 2 and 3 to get 34210;
(4) Flip all the numbers after the original 2 (current 3), that is, flip 4210 to get 30124;
(5) Find the next permutation of 24310 as 30124.
*/

function swap(arr, i, j) {
  var t = arr[i];
  arr[i] = arr[j];
  arr[j] = t;

}
function sort(index) {
  for (var j = index.length - 2; j >= 0 && index[j] > index[j + 1]; j--)
    ; //本循环从位置数组的末尾开始,找到第一个左边小于右边的位置,即j
  if (j < 0) return false; //已完成全部排列
  for (var k = index.length - 1; index[k] < index[j]; k--)
    ; //本循环从位置数组的末尾开始,找到比j位置大的位置中最小的,即k
  swap(index, j, k);
  for (j = j + 1, k = index.length - 1; j < k; j++, k--)
    swap(index, j, k); //本循环翻转j+1到末尾的所有位置
  return true;
}
function perm(arr) {
  var index = new Array(arr.length);
  for (var i = 0; i < index.length; i++)
    index[i] = i;
  do {
    var temp = [];
    for (i = 0; i < index.length; i++)
      temp.push(arr[index[i]]);
    if (validateCandidate(temp)) {
      console.log(temp);
      break;
    }
  } while (sort(index));
}
perm([1, 2, 3, 4, 5, 6, 7, 8, 9]);
Copy after login

The above is the entire content of this article, I hope you all like it.

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template