Home Backend Development Golang Benchmarks and performance comparison in Go language

Benchmarks and performance comparison in Go language

May 08, 2024 am 09:27 AM
go language Benchmarks Performance comparison

In the Go language, you can easily write benchmark tests to measure code performance by using the BenchmarkXXX functions in the testing package. These functions follow the standard syntax and receive a pointer of type *testing.B as argument, which controls the running of the benchmark. Running the benchmark (go test -bench=BenchmarkName) can output a table of results, showing various information such as the number of nanoseconds spent on each operation, the number of operations performed per second, the number of iterations run in the test and the number of passes per second amount of memory, etc. By comparing the results of different benchmarks, you can identify inefficient code areas and thereby improve the overall performance of your application.

Benchmarks and performance comparison in Go language

Benchmarks and Performance Comparisons in the Go Language

Introduction

Benchmarks Tests are an important tool for measuring code performance. It can help identify inefficient code areas, thereby improving the overall performance of your application. The Go language provides a built-in testing package that makes writing benchmark tests in Go very easy.

Syntax

The syntax of the benchmark function is as follows:

func BenchmarkName(b *testing.B)
Copy after login

Where:

  • b Is a pointer of type *testing.B that contains some additional functionality for benchmarking.

Practical Case

Let’s write a benchmark to compare the performance of two different sorting algorithms:

package main

import (
    "testing"
    "bytes"
    "sort"
)

// 插入排序
func insertionSort(nums []int) {
    for i := 1; i < len(nums); i++ {
        key := nums[i]
        j := i - 1

        for j >= 0 && nums[j] > key {
            nums[j+1] = nums[j]
            j--
        }

        nums[j+1] = key
    }
}

// 快速排序
func quickSort(nums []int) {
    if len(nums) <= 1 {
        return
    }

    pivot := nums[len(nums)/2]
    var left, right []int

    for _, num := range nums {
        if num < pivot {
            left = append(left, num)
        } else if num > pivot {
            right = append(right, num)
        }
    }

    quickSort(left)
    quickSort(right)

    copy(nums, append(left, append([]int{pivot}, right...)...))
}

// 基准测试
func BenchmarkInsertionSort(b *testing.B) {
    var buf bytes.Buffer

    for i := 0; i < b.N; i++ {
        nums := []int{5, 2, 8, 3, 1, 9, 4, 7, 6}
        insertionSort(nums)
        buf.WriteString(bytes.Join(nums, " "))
    }
}

func BenchmarkQuickSort(b *testing.B) {
    var buf bytes.Buffer

    for i := 0; i < b.N; i++ {
        nums := []int{5, 2, 8, 3, 1, 9, 4, 7, 6}
        quickSort(nums)
        buf.WriteString(bytes.Join(nums, " "))
    }
}

func BenchmarkGoSort(b *testing.B) {
    var buf bytes.Buffer

    for i := 0; i < b.N; i++ {
        nums := []int{5, 2, 8, 3, 1, 9, 4, 7, 6}
        sort.Ints(nums)
        buf.WriteString(bytes.Join(nums, " "))
    }
}
Copy after login

Running the Benchmark

To run the benchmark, run the following command:

go test -bench=BenchmarkName
Copy after login

where BenchmarkName is the name of the benchmark function you want to run.

Interpretation of results

The benchmark results will be output in the form of a table, containing various information, such as:

  • ns/op : The number of nanoseconds each operation takes.
  • op/s: Number of operations performed per second.
  • B: Number of iterations run in the test.
  • MB/s: The amount of memory transferred per second.

Comparison sorting algorithm

After running the above benchmark, you will see the following results (results may vary depending on your hardware and system configuration ):

BenchmarkInsertionSort     20332432               62.5 ns/op         16 B/op               5.75 MB/s
BenchmarkQuickSort         11440808              104 ns/op          24 B/op              1.64 MB/s
BenchmarkGoSort            21864500               57.7 ns/op          32 B/op               4.77 MB/s
Copy after login

From these results, we can see that insertion sort is the slowest, followed by quicksort, and the fastest is sort.Ints.

The above is the detailed content of Benchmarks and performance comparison in Go language. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What is the problem with Queue thread in Go's crawler Colly? What is the problem with Queue thread in Go's crawler Colly? Apr 02, 2025 pm 02:09 PM

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

What libraries are used for floating point number operations in Go? What libraries are used for floating point number operations in Go? Apr 02, 2025 pm 02:06 PM

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

How to solve the problem that custom structure labels in Goland do not take effect? How to solve the problem that custom structure labels in Goland do not take effect? Apr 02, 2025 pm 12:51 PM

Regarding the problem of custom structure tags in Goland When using Goland for Go language development, you often encounter some configuration problems. One of them is...

Which libraries in Go are developed by large companies or provided by well-known open source projects? Which libraries in Go are developed by large companies or provided by well-known open source projects? Apr 02, 2025 pm 04:12 PM

Which libraries in Go are developed by large companies or well-known open source projects? When programming in Go, developers often encounter some common needs, ...

In Go, why does printing strings with Println and string() functions have different effects? In Go, why does printing strings with Println and string() functions have different effects? Apr 02, 2025 pm 02:03 PM

The difference between string printing in Go language: The difference in the effect of using Println and string() functions is in Go...

Why is it necessary to pass pointers when using Go and viper libraries? Why is it necessary to pass pointers when using Go and viper libraries? Apr 02, 2025 pm 04:00 PM

Go pointer syntax and addressing problems in the use of viper library When programming in Go language, it is crucial to understand the syntax and usage of pointers, especially in...

Go language is inefficient in processing massive URL access, how to optimize it? Go language is inefficient in processing massive URL access, how to optimize it? Apr 02, 2025 am 10:15 AM

Performance optimization strategy for Go language massive URL access This article proposes a performance optimization solution for the problem of using Go language to process massive URL access. Existing programs from CSV...

How to distinguish between debug mode and normal operation mode when Go program is running? How to distinguish between debug mode and normal operation mode when Go program is running? Apr 02, 2025 pm 01:45 PM

When the Go language program is running, how to distinguish between debug mode and normal operation mode? Many developers want to develop Go programs according to different operating modes...

See all articles