What are the best practices for C++ performance optimization?
To optimize C performance, use these best practices: Use inline functions to increase the efficiency of small functions. Avoid unnecessary copies and use references or pointers instead. Use caching to reduce the overhead of accessing external memory. Optimize containers to improve lookup performance, such as using unordered_map. Avoid using virtual functions to reduce runtime overhead.
C Best Practices for Performance Optimization
Introduction
C is a A high-performance language, but if not optimized, its performance may suffer. Following some best practices can significantly improve the performance of your C code.
1. Use inline functions
Inline functions embed function code directly into the code that calls it, avoiding the overhead of function calls. Inlining is especially effective for small functions.
inline double calculateArea(double radius) { return 3.14159265 * radius * radius; }
2. Avoid unnecessary copies
Unnecessary copies waste time and space. Use references or pointers to reduce the amount of data copied.
void swap(int &a, int &b) { int temp = a; a = b; b = temp; }
3. Use cache
Cache stores frequently accessed data in fast memory, thereby reducing the overhead of accessing external memory.
int cachedValue = -1; int getCachedValue() { if (cachedValue == -1) { cachedValue = calculateValue(); } return cachedValue; }
4. Optimizing containers
The standard library container provides many options to optimize performance. For example, using unordered_map
instead of map
can result in faster lookup times.
unordered_map<int, string> myMap;
5. Avoid using virtual functions
Virtual functions cause runtime polymorphism overhead. Only use them when you really need them.
class Base { public: virtual void print() { cout << "Base class" << endl; } }; class Derived : public Base { public: void print() override { cout << "Derived class" << endl; } };
Practical Example
The following is a practical example of optimizing C code using the above best practices:
// 计算圆的面积 inline double calculateArea(double radius) { return 3.14159265 * radius * radius; } // 避免不必要的拷贝 void swap(int &a, int &b) { int temp = a; a = b; b = temp; } // 使用缓存 unordered_map<int, string> myMap;
By applying these best practices, you The performance of C code can be significantly improved, allowing it to handle larger data sets and more complex algorithms.
The above is the detailed content of What are the best practices for C++ performance optimization?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Nginx performance tuning can be achieved by adjusting the number of worker processes, connection pool size, enabling Gzip compression and HTTP/2 protocols, and using cache and load balancing. 1. Adjust the number of worker processes and connection pool size: worker_processesauto; events{worker_connections1024;}. 2. Enable Gzip compression and HTTP/2 protocol: http{gzipon;server{listen443sslhttp2;}}. 3. Use cache optimization: http{proxy_cache_path/path/to/cachelevels=1:2k

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

There is no function named "sum" in the C language standard library. "sum" is usually defined by programmers or provided in specific libraries, and its functionality depends on the specific implementation. Common scenarios are summing for arrays, and can also be used in other data structures, such as linked lists. In addition, "sum" is also used in fields such as image processing and statistical analysis. An excellent "sum" function should have good readability, robustness and efficiency.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.
