Home > Backend Development > Golang > Sharing of application cases of Golang technology in machine learning

Sharing of application cases of Golang technology in machine learning

PHPz
Release: 2024-05-08 17:18:01
Original
453 people have browsed it

Golang technology is widely used in the field of machine learning. This article focuses on three typical cases: TensorFlow Go: for efficient deep learning application development. Kubeflow: a machine learning platform that simplifies model deployment and management. MLflow: A model tracking, management and deployment platform that provides a consistent interface.

Sharing of application cases of Golang technology in machine learning

Application case sharing of Golang technology in machine learning

Foreword

Golang, also known as Go, is an open source programming language known for its efficiency, concurrency, and portability. In recent years, it has become an increasingly popular choice in the field of machine learning. This article will share several practical application cases of Golang technology in machine learning.

1. TensorFlow Go

TensorFlow Go is the Go language implementation of the TensorFlow machine learning library developed by Google. It allows developers to write efficient deep learning applications using Go.

Practical Case: Image Classification

import (
    "fmt"
    "os"

    "github.com/tensorflow/tensorflow/go"
    "github.com/tensorflow/tensorflow/go/op"
)

func main() {
    model, err := tensorflow.LoadSavedModel("path/to/model", []string{"serve"}, []string{"predict"})
    if err != nil {
        fmt.Println(err)
        return
    }

    jpegBytes, err := os.ReadFile("path/to/image.jpg")
    if err != nil {
        fmt.Println(err)
        return
    }

    predictions, err := model.Predict(map[string]tensorflow.Output{
        "images": tensorflow.Placeholder(tensorflow.MakeShape([]int64{1, 224, 224, 3}), tensorflow.String),
    }, map[string]tensorflow.Tensor{
        "images": tensorflow.NewTensor(jpegBytes),
    })
    if err != nil {
        fmt.Println(err)
        return
    }

    fmt.Println(predictions["probabilities"].Value())
}
Copy after login

2. Kubeflow

Kubeflow is an open source machine learning platform built on On top of Kubernetes. It provides a set of components that simplify the deployment, management, and service of machine learning models.

Practical Case: Model Training Pipeline

import (
    "context"
    "fmt"

    "github.com/kubeflow/pipelines/api/v2beta1/go/client"
    "github.com/kubeflow/pipelines/api/v2beta1/go/pipelinespec"
)

func main() {
    pipelineSpec := &pipelinespec.PipelineSpec{
        Components: []*pipelinespec.Component{
            {
                Executor: &pipelinespec.Component_ContainerExecutor{
                    ContainerExecutor: &pipelinespec.ContainerExecutor{
                        Image: "my-custom-image",
                    },
                },
            },
        },
        Dag: &pipelinespec.PipelineSpec_Dag{
            Dag: &pipelinespec.Dag{
                Tasks: map[string]*pipelinespec.PipelineTask{
                    "train": {
                        ComponentRef: &pipelinespec.ComponentRef{
                            Name: "my-custom-component",
                        },
                    },
                },
            },
        },
    }

    // 创建 Kubeflow 客户端
    ctx := context.Background()
    client, err := client.NewClient(client.Options{
        Endpoint: "host:port",
    })
    if err != nil {
        fmt.Println(err)
        return
    }

    // 创建并运行管道
    pipeline, err := client.PipelinesClient.CreatePipeline(ctx, &pipelinespec.CreatePipelineRequest{
        PipelineSpec: pipelineSpec,
    })
    if err != nil {
        fmt.Println(err)
        return
    }

    fmt.Println("Pipeline ID:", pipeline.GetId())
}
Copy after login

3. MLflow

MLflow is an open source platform for tracking , manage and deploy machine learning models. It provides a consistent interface across different environments (on-premises, cloud).

Practical case: model registration

import (
    "context"
    "fmt"
    "io"

    "github.com/mlflow/mlflow-go/pkg/client"
    "github.com/mlflow/mlflow-go/pkg/models"
)

func main() {
    // 创建 MLflow 客户端
    ctx := context.Background()
    client, err := client.NewClient(client.Options{
        Endpoint: "host:port",
    })
    if err != nil {
        fmt.Println(err)
        return
    }

    // 注册模型
    model := &models.Model{
        Name: "my-model",
        MlflowModel: &models.MlflowModel{
            ArtifactPath: "path/to/model",
        },
    }
    response, err := client.RegisterModel(ctx, model)
    if err != nil {
        fmt.Println(err)
        return
    }

    // 下载模型作为流
    resp, err := client.DownloadModelVersion(ctx, response.GetMlflowModel().GetVersion(), "model.zip")
    if err != nil {
        fmt.Println(err)
        return
    }
    defer resp.Body.Close()

    // 将模型保存到本地文件
    fw, err := os.Create("model.zip")
    if err != nil {
        fmt.Println(err)
        return
    }
    defer fw.Close()

    if _, err = io.Copy(fw, resp.Body); err != nil {
        fmt.Println(err)
    }
}
Copy after login

The above is the detailed content of Sharing of application cases of Golang technology in machine learning. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template