How to implement non-blocking concurrency in Java concurrent programming?
It is crucial to achieve non-blocking concurrency in Java, which can be achieved in the following ways: using the Future and CompletableFuture classes: Future represents the result of asynchronous calculation, and CompletableFuture extends Future with a richer API and more convenient usage. CompletableFuture can be used to execute time-consuming tasks asynchronously, allowing the application to process the results after the task is completed while continuing to perform other tasks, improving responsiveness.
Java Concurrent Programming: Implementing Non-Blocking Concurrency
In Java, implementing non-blocking concurrency is a crucial technology because it can improve application Program performance and responsiveness. Non-blocking concurrency allows multiple threads to work on different tasks simultaneously without waiting for each other to complete.
Using Future and CompletableFuture
Java’s Future
and CompletableFuture
classes are a good way to implement non-blocking concurrency. Future
represents the result of an asynchronous calculation, and CompletableFuture
is an extension of Future
, with a richer API and more convenient usage.
The following is a small example of using CompletableFuture
to achieve non-blocking concurrency:
import java.util.concurrent.CompletableFuture; public class NonBlockingExample { public static void main(String[] args) { // 创建一个 CompletableFuture,用于计算一个质数列表 CompletableFuture<List<Integer>> primeListFuture = CompletableFuture.supplyAsync(() -> calculatePrimeNumbers(10000)); // 继续执行其他任务,无需等待质数列表计算完成 System.out.println("Continuing with other tasks..."); // 当质数列表计算完成后,处理结果 primeListFuture.thenAccept(list -> { System.out.println("Prime numbers calculated:"); list.forEach(System.out::println); }); } private static List<Integer> calculatePrimeNumbers(int limit) { // 模拟计算质数列表的耗时操作 try { Thread.sleep(5000); } catch (InterruptedException e) { e.printStackTrace(); } List<Integer> primes = new ArrayList<>(); for (int i = 2; i <= limit; i++) { if (isPrime(i)) { primes.add(i); } } return primes; } private static boolean isPrime(int number) { for (int i = 2; i <= number / 2; i++) { if (number % i == 0) { return false; } } return true; } }
In this example, the calculatePrimeNumbers
method is a time-consuming Operation, represents a background task that may take a large amount of time. By using CompletableFuture
, we can execute this task asynchronously and process the results upon completion without waiting for the task to complete. This way, our application can continue to perform other tasks, improving responsiveness.
The above is the detailed content of How to implement non-blocking concurrency in Java concurrent programming?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

Guide to TimeStamp to Date in Java. Here we also discuss the introduction and how to convert timestamp to date in java along with examples.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

Spring Boot simplifies the creation of robust, scalable, and production-ready Java applications, revolutionizing Java development. Its "convention over configuration" approach, inherent to the Spring ecosystem, minimizes manual setup, allo
