Home Backend Development Python Tutorial Python操作Word批量生成文章的方法

Python操作Word批量生成文章的方法

Jun 06, 2016 am 11:13 AM

下面通过COM让Python与Word建立连接实现Python操作Word批量生成文章,具体介绍请看下文:

需要做一些会议记录。总共有多少呢?五个地点x7个月份x每月4篇=140篇。虽然不很重要,但是140篇记录完全雷同也不好。大体看了一下,此类的记录大致分为四段。于是决定每段提供四种选项,每段从四选项里随机选一项,拼凑成四段文字,存成一个文件。而且要打印出来,所以准备生成一个140页的Word文档,每页一篇。

需要用到win32com模块(下载链接: http://sourceforge.net/projects/pywin32/files/ ),

通过COM让Python与Word建立连接。代码如下:

# -*- coding: cp936 -*-
#导入随机数模块
import random
#导入win32com模块,用来操作Word
import win32com 
from win32com.client import Dispatch, constants
#创建新的WORD文档
w = win32com.client.Dispatch('Word.Application')
w.Visible = 0#0表示在后台操作。设为1则在前端能看到Word界面。
w.DisplayAlerts = 0#不显示警告
doc = w.Documents.Add()
#准备对文档头部进行操作
myRange = doc.Range(0,0)#从第0行第0个字开始:
myRange.Style.Font.Name = "宋体"#设置字体
myRange.Style.Font.Size = "16"#设置为三号
#========以下为文章的内容部分=======
#文章标题(用\n来控制文字的换行操作)
title='XXXXX会\n会议时间: '
#会议时间
timelist=['1月9日','1月16日','1月23日','1月30日',
 '2月6日','2月13日','2月20日','2月27日',
 '3月6日','3月13日','3月20日','3月27日',
 '4月3日','4月10日','4月17日','4月24日',
 '5月8日','5月15日','5月22日','5月29日',
 '6月5日','6月12日','6月19日','6月26日',
 '7月3日','7月10日','7月17日','7月24日'
 ]
#会议地点
addrlist=['\n会议地点: 地点AXXX\n主持人: 张X\n',
 '\n会议地点: 地点BXXXX主持人: 吴X\n',
 '\n会议地点: 地点CXXXX\n主持人: 王X\n',
 '\n会议地点: 地点DXXXX\n主持人: 冉X\n',
 '\n会议地点: 地点EXXXX\n主持人: 李X\n',
 ]
#参加人员
member='参加人员: XXX,XXX,XXX,XXX,XXX,XXX,XXX。\n会议内容:\n '
#四段文字
list1=['第一段(A型)\n','第一段(B型)\n','第一段(C型)\n','第一段(D型)\n']
list2=['第二段(A型)\n','第二段(B型)\n','第二段(C型)\n','第二段(D型)\n']
list3=['第三段(A型)\n','第三段(B型)\n','第三段(C型)\n','第三段(D型)\n']
list4=['第四段(A型)\n','第四段(B型)\n','第四段(C型)\n','第四段(D型)\n']
#开始循环操作,往Word里面写文字
 #先开始遍历地点(A,B,C,D,E四个地区)
for addr in addrlist:
 #遍历28个日期
 for time in timelist:
 #随机生成四个数(范围0-3)
 aa=random.randint(0,3)
 bb=random.randint(0,3)
 cc=random.randint(0,3)
 dd=random.randint(0,3)
 #从文件开头依次插入标题、时间、地点、人物
 myRange.InsertAfter(title)
 myRange.InsertAfter(time)
 myRange.InsertAfter(addr)
 myRange.InsertAfter(str3)
 #在后面继续添加随机选取的四段文字
 myRange.InsertAfter(list1[aa])
 myRange.InsertAfter(list2[bb])
 myRange.InsertAfter(list3[cc])
 myRange.InsertAfter(list4[dd])
#循环完毕,保存为 D:\d.doc
doc.SaveAs(r'D:\d.doc')
#退出操作
doc.Close()
w.Quit()
Copy after login


最终结果如图:

================================================================

==============================================================

写在最后:

由于写的比较仓促,所以有些细节问题没能解决,花了20分钟手动调整了一下。觉得有些屈辱。问题如下:

1.正文是三号字体,所以在range处的字号设置了“16”。想让题目是二号字体、居中显示。

2.如何在第四段写完之后,自动插入一个分页符?这样每篇文章打印出来的都有独立的页,不至于出现“第2篇文章的标题紧跟在第1篇文章的屁股后面、打印在了同一张纸上”的情况。

以上就是本文全部介绍,希望对大家学习Python操作Word批量生成文章的方法有所帮助

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to Use Python to Find the Zipf Distribution of a Text File How to Use Python to Find the Zipf Distribution of a Text File Mar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML? How Do I Use Beautiful Soup to Parse HTML? Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Perform Deep Learning with TensorFlow or PyTorch? How to Perform Deep Learning with TensorFlow or PyTorch? Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Mathematical Modules in Python: Statistics Mathematical Modules in Python: Statistics Mar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and Deserialization of Python Objects: Part 1 Serialization and Deserialization of Python Objects: Part 1 Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

What are some popular Python libraries and their uses? What are some popular Python libraries and their uses? Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

How to Create Command-Line Interfaces (CLIs) with Python? How to Create Command-Line Interfaces (CLIs) with Python? Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

Scraping Webpages in Python With Beautiful Soup: Search and DOM Modification Scraping Webpages in Python With Beautiful Soup: Search and DOM Modification Mar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

See all articles