Python使用Supervisor来管理进程的方法
本文实例讲述了Python使用Supervisor来管理进程的方法。分享给大家供大家参考。具体分析如下:
Supervisor可以启动、停止、重启*nix系统中的程序。也可以重启崩溃的程序。
supervisord的一个守护进程,用于将指定的进程当做子进程来运行。
supervisorctl是一个客户端程序,可以查看日志并通过统一的会话来控制进程。
看例子:
我们写了一个py脚本,用于往log文件中记录一条当前的时间。
root@ubuntu:/home/zoer# cat daemon.py #!/usr/bin/env python import time import os time.sleep(1) f=open("log",'a') t=time.time() f.write(str(t)) f.write("\n") f.close()
安装过程就不说了。
安装完毕supervisor之后【将配置文件放在/etc下】。修改配置文件,在最后增加如下内容:
[program:ddd]
command=/home/zoer/daemon.py
autorestart=true
然后我们启动supervisor并启动daemon.py的执行。
root@ubuntu:/home/zoer# supervisord /usr/local/lib/python2.7/dist-packages/supervisor-3.0b1-py2.7.egg/supervisor/options.py:286: UserWarning: Supervisord is running as root and it is searching for its configuration file in default locations (including its current working directory); you probably want to specify a "-c" argument specifying an absolute path to a configuration file for improved security. 'Supervisord is running as root and it is searching ' root@ubuntu:/home/zoer# supervisorctl ddd STARTING supervisor> start ddd ddd: ERROR (already started) supervisor> stop ddd ddd: stopped supervisor> start ddd ddd: started supervisor>
从上面的例子中,看到,可以通过start或者stop命令来启动或者停止ddd这个进程。ddd这里就是我们在配置文件中增加的内容(daemon.py这个脚本)。
也可以使用restart。如下:
supervisor> restart ddd
ddd: stopped
ddd: started
下面我们测试一下,假设说我们手动kill掉了ddd这个进程,那么ddd会自动恢复执行吗?
为了做实验,把代码修改如下:
root@ubuntu:/home/zoer# cat daemon.py #!/usr/bin/env python import time import os while True: time.sleep(1) f=open("log",'a') t=time.time() f.write(str(t)) f.write("\n") f.close()
通过ps可以找到这个进程的id:
root 9354 0.2 0.4 10924 4200 ? S 23:16 0:00 python /home/zoer/daemon.py root 9395 0.0 0.0 4392 832 pts/3 S+ 23:17 0:00 grep --color=auto daemon root@ubuntu:/home/zoer#
看下面的操作:
root@ubuntu:/home/zoer# rm log;touch log;kill 9354 root@ubuntu:/home/zoer# cat log 1364710712.51 root@ubuntu:/home/zoer# cat log 1364710712.51 1364710713.51 root@ubuntu:/home/zoer# cat log 1364710712.51 1364710713.51 root@ubuntu:/home/zoer# cat log 1364710712.51 1364710713.51 1364710714.52 root@ubuntu:/home/zoer# cat log 1364710712.51 1364710713.51 1364710714.52 1364710715.52
删除了log文件,并且重新创建。然后干掉了daemon.py的那个进程。会发现log内容又重新有新的内容了。再次ps查看进程号。
root 9429 0.1 0.4 10924 4200 ? S 23:18 0:00 python /home/zoer/daemon.py root 9440 0.0 0.0 4392 828 pts/3 S+ 23:19 0:00 grep --color=auto daemon root@ubuntu:/home/zoer#
会发现进程号已经变成9429了。说明supervisor已经重启了被干掉了的进程。
希望本文所述对大家的Python程序设计有所帮助。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

VS Code is available on Mac. It has powerful extensions, Git integration, terminal and debugger, and also offers a wealth of setup options. However, for particularly large projects or highly professional development, VS Code may have performance or functional limitations.

The key to running Jupyter Notebook in VS Code is to ensure that the Python environment is properly configured, understand that the code execution order is consistent with the cell order, and be aware of large files or external libraries that may affect performance. The code completion and debugging functions provided by VS Code can greatly improve coding efficiency and reduce errors.
