使用Python中PDB模块中的命令来调试Python代码的教程
你有多少次陷入不得不更改别人代码的境地?如果你是一个开发团队的一员,那么你遇到上述境地的次数比你想要的还要多。然而,Python中有一个整洁的调试特性(像其他大多数语言一样),在这种情况下使用非常方便。本文是一篇快速教程,希望它能让你的编码生活更加容易。
1. 一个混乱的程序
出于本教程的目的,让我们研究一下下面的简单程序。
这个程序接收两个命令行参数,然后执行加法和减法操作。
(假设用户输入的是有效值,因此代码中我们没有进行错误处理。)
import sys def add(num1=0, num2=0): return int(num1) + int(num2) def sub(num1=0, num2=0): return int(num1) - int(num2) def main(): #Assuming our inputs are valid numbers print sys.argv addition = add(sys.argv[1], sys.argv[2]) print addition subtraction = sub(sys.argv[1], sys.argv[2]) print subtraction if __name__ == '__main__': main()
2. PDB
Python提供了一个有用的模块PDB,它实际上是一个交互式源代码调试器。
你需要下面的两行代码来使用此模块。
import pdb pdb.set_trace()
看一下我们修改过的程序,里面包含了一些断点。
import pdb import sys def add(num1=0, num2=0): return int(num1) + int(num2) def sub(num1=0, num2=0): return int(num1) - int(num2) def main(): #Assuming our inputs are valid numbers print sys.argv pdb.set_trace() # <-- Break point added here addition = add(sys.argv[1], sys.argv[2]) print addition subtraction = sub(sys.argv[1], sys.argv[2]) print subtraction if __name__ == '__main__': main()
3. 程序执行触发调试器
一旦你设置好断点以后,你就可以像平时一样执行程序。
python debugger.py 1 2
程序将会在遇到的第一个断点处停止执行。
['debugger.py'] > /Users/someuser/debugger.py(15)main() -> addition = add(sys.argv[1], sys.argv[2]) (Pdb)
我们在第14行设置了一个断点,所以我们能看到将要执行的下一行是第15行。可以看到,在执行到第15行之前程序已经停止。
在这里我们有几个选项,让我们在下面步骤中看看一些调试指令。
4. 下一行->n
在你的调试器提示中,输入n运行到下一行。
> /Users/someuser/debugger.py(14)main() -> addition = add(sys.argv[1], sys.argv[2]) (Pdb) n > /Users/someuser/debugger.py(15)main() -> print addition
这会执行当前行代码,并准备执行下一行。
我们可以使用n来逐行执行整个程序,但这其实没有什么用处。
可能你已经看到,PDB实际上并没有进入我们的add函数中。下面,就让我们看看其他几个令调试更加有趣的选项。
注意:
一个更酷的特性是你可以单击回车键来执行以前的命令(在本例中只要指令n)。
5. 打印->p
下面,我们再次开始调试程序。(你可以通过单击c使PDB跳到末尾或者直到下一个断点,因为程序中我们并没有其他的断点了,所有程序将会执行完成。)
['debugger.py', '1', '2'] > /Users/someuser/debugger.py(14)main() -> addition = add(sys.argv[1], sys.argv[2]) (Pdb)
现在,如果我们想知道sys.argv中包含什么内容,我们可以输入以下内容:
-> addition = add(sys.argv[1], sys.argv[2]) (Pdb) p sys.argv ['debugger.py', '1', '2'] (Pdb) p sys.argv[1] '1' (Pdb)
使用这种方法可以相当方便地查看变量中实际存储着什么值。
现在我们将进入加法函数内部。
6. 单步->s
我们可以使用“s”进入加法函数内部。
(Pdb) s --Call-- > /Users/someuser/debugger.py(4)add() -> def add(num1=0, num2=0): (Pdb) n > /Users/someuser/debugger.py(5)add() -> return int(num1) + int(num2) (Pdb)
这将把我们带入加法函数的内部,现在我们可以在加法函数内部使用n、p和其他的操作指令。
此时单击“r”将会把我们带到前面进入函数的返回语句。
如果你想快速跳转到一个函数的结尾处,那么这个指令将很有用。
7. 动态添加断点- > b
前面,在程序运行之前,我们使用pdb.set_trace()设置了一个断点。
不过,经常在调试会话已经开始之后,我们想要在程序中特定的地方添加断点。
这里我们就可以使用选项“b”来实现这种目的。
我们重新开始执行程序。
['debugger.py', '1', '2'] > /Users/someuser/debugger.py(15)main() -> addition = add(sys.argv[1], sys.argv[2]) (Pdb)
此时我在第18行设置一个断点。
-> addition = add(sys.argv[1], sys.argv[2]) (Pdb) b 18 Breakpoint 1 at /Users/someuser/debugger.py:18 (Pdb) c We are in add-- 3 > /Users/someuser/debugger.py(18)main() -> print subtraction (Pdb) p subtraction -1 (Pdb)
从上面我们可以看到,PDB跳到了第18行并等待下一个指令。
同时,PDB还为该断点分配了一个号码(在本例中是1)。为了以后的执行,我们可以通过开启或禁用断点号码来启用或停用对应的断点。
8. 列表->l
有时在调试的时候,你可能会忘记此时你处在代码的什么地方。在这种情况下,使用“l”将会打印出一个友好的总结,它能够显示出此刻你在代码中的位置。
['debugger.py', '1', '2'] > /Users/someuser/debugger.py(15)main() -> addition = add(sys.argv[1], sys.argv[2]) (Pdb) l 10 11 def main(): 12 #Assuming our inputs are valid numbers 13 print sys.argv 14 pdb.set_trace() # <-- Break point added here 15 -> addition = add(sys.argv[1], sys.argv[2]) 16 print addition 17 subtraction = sub(sys.argv[1], sys.argv[2]) 18 print subtraction
9. 动态分配变量
在调试会话期间,你可以分配变量来帮助你进行调试,知道这些对你来说也是有帮助的。例如:
['debugger.py', '1', '2'] > /Users/someuser/debugger.py(15)main() -> addition = add(sys.argv[1], sys.argv[2]) (Pdb) n We are in add-- > /Users/someuser/debugger.py(16)main() -> print addition (Pdb) p addition 3 #<--- addition here is 3 (Pdb) addition = 'this is now string' #<--- We changed the value of additon (Pdb) n this is now string #<--- Now when we print it we actually gets it as a string. that we just set above. > /Users/someuser/debugger.py(17)main() -> subtraction = sub(sys.argv[1], sys.argv[2])
注意:
如果你想设置一些如n(即PDB指令)这样的变量,你应该使用这种指令:
(Pdb) !n=5 (Pdb) p n 5
10. 结束->q
最后,在代码的任何地方如果你想结束调试,可以使用“q”,那么正在执行的程序将会终止。
11. 扩展阅读
本文只涉及到了PDB的表面用法,其实使用PDB你还可以做到更多(PDB 文档)。
使用IPython的人可以在ipdb中找到一个更好的调试器,它提供了tab补充、语法高亮和其他一些很酷的特性。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

There is no APP that can convert all XML files into PDFs because the XML structure is flexible and diverse. The core of XML to PDF is to convert the data structure into a page layout, which requires parsing XML and generating PDF. Common methods include parsing XML using Python libraries such as ElementTree and generating PDFs using ReportLab library. For complex XML, it may be necessary to use XSLT transformation structures. When optimizing performance, consider using multithreaded or multiprocesses and select the appropriate library.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.
