Home > Backend Development > Python Tutorial > 由Python运算π的值深入Python中科学计算的实现

由Python运算π的值深入Python中科学计算的实现

WBOY
Release: 2016-06-06 11:25:07
Original
1746 people have browsed it

π是一个无数人追随的真正的神奇数字。我不是很清楚一个永远重复的无理数的迷人之处。在我看来,我乐于计算π,也就是计算π的值。因为π是一个无理数,它是无限的。这就意味着任何对π的计算都仅仅是个近似值。如果你计算100位,我可以计算101位并且更精确。迄今为止,有些人已经选拔出超级计算机来试图计算最精确的π。一些极值包括 计算π的5亿位。你甚至能从网上找到包含 π的一百亿位的文本文件(注意啦!下载这个文件可能得花一会儿时间,并且没法用你平时使用的记事本应用程序打开。)。对于我而言,如何用几行简单的Python来计算π才是我的兴趣所在。
你总是可以 使用 math.pi 变量的 。它被 包含在 标准库中, 在你试图自己 计算它之前,你应该去使用它 。 事实上 , 我们将 用它来计算 精度 。作为 开始, 让我们看 一个 非常直截了当的 计算Pi的 方法 。像往常一样,我将使用Python 2.7,同样的想法和代码可能应用于不同的版本。我们将要使用的大部分算法来自Pi WikiPedia page并加以实现。让我们看看下面的代码:
 

importsys
importmath
 
defmain(argv):
 
  iflen(argv) !=1:
    sys.exit('Usage: calc_pi.py <n>')
 
  print'\nComputing Pi v.01\n'
   
  a=1.0
  b=1.0/math.sqrt(2)
  t=1.0/4.0
  p=1.0
     
  foriinrange(int(sys.argv[1])):
    at=(a+b)/2
    bt=math.sqrt(a*b)
    tt=t-p*(a-at)**2
    pt=2*p
     
    a=at;b=bt;t=tt;p=pt
     
  my_pi=(a+b)**2/(4*t)
  accuracy=100*(math.pi-my_pi)/my_pi
     
  print"Pi is approximately: "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if__name__=="__main__":
  main(sys.argv[1:])
Copy after login

这是个非常简单的脚本,你可以下载,运行,修改,和随意分享给别人。你能够看到类似下面的输出结果:

2015417113725870.png (347×591)

你会发现,尽管 n 大于4 ,我们逼近 Pi 精度却没有多大的提升。 我们可以猜到即使 n的值更大,同样的事情(pi的逼近精度没有提升)依旧会发生。幸运的是,有不止一种方法来揭开这个谜。使用 Python Decimal (十进制)库,我们可以就可以得到更高精度的值来逼近Pi。让我们来看看库函数是如何使用的。这个简化的版本,可以得到多于11位的数字 通常情况小Python 浮点数给出的精度。下面是Python Decimal 库中的一个例子 :

wpid-python_decimal_example-2013-05-28-12-54.png

Copy after login

看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 简单点说,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾数,它不会影响任何计算。通过设置getcontext().prec 你可以的到你想要的位数 。我们试试。

2015417113806473.png (480×82)

看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 简单点说,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾数,它不会影响任何计算。通过设置getcontext().prec 你可以的到你想要的位数 。我们试试。

2015417113925777.png (321×52)

很好。 现在让我们 试着用这个 来 看看我们是否能 与我们以前的 代码 有更好的 逼近 。 现在, 我通常 是反对 使用“ from library import * ” , 但在这种情况下, 它会 使代码 看起来更漂亮 。

importsys
importmath
fromdecimalimport*
 
defmain(argv):
 
  iflen(argv) !=1:
    sys.exit('Usage: calc_pi.py <n>')
 
  print'\nComputing Pi v.01\n'
   
  a=Decimal(1.0)
  b=Decimal(1.0/math.sqrt(2))
  t=Decimal(1.0)/Decimal(4.0)
  p=Decimal(1.0)
     
  foriinrange(int(sys.argv[1])):
    at=Decimal((a+b)/2)
    bt=Decimal(math.sqrt(a*b))
    tt=Decimal(t-p*(a-at)**2)
    pt=Decimal(2*p)
     
    a=at;b=bt;t=tt;p=pt
     
  my_pi=(a+b)**2/(4*t)
  accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
     
  print"Pi is approximately: "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if__name__=="__main__":
  main(sys.argv[1:])
Copy after login


输出结果:

2015417113950921.png (436×456)

好了。我们更准确了,但看起来似乎有一些舍入。从n = 100和n = 1000,我们有相同的精度。现在怎么办?好吧,现在我们来求助于公式。到目前为止,我们计算Pi的方式是通过对几部分加在一起。我从DAN 的关于Calculating Pi 的文章中发现一些代码。他建议我们用以下3个公式:

Bailey–Borwein–Plouffe 公式
Bellard的公式
Chudnovsky 算法

让我们从Bailey–Borwein–Plouffe 公式开始。它看起来是这个样子:

2015417114019059.png (437×47)

在代码中我们可以这样编写它:

import sys
import math
from decimal import *
 
def bbp(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6)))
    k+=1
  return pi
 
def main(argv):
 
    if len(argv) !=2:
    sys.exit('Usage: BaileyBorweinPlouffe.py <prec> <n>')
     
  getcontext().prec=(int(sys.argv[1]))
  my_pi=bbp(int(sys.argv[2]))
  accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
 
  print"Pi is approximately "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if __name__=="__main__":
  main(sys.argv[1:])
Copy after login


抛开“ 包装”的代码,BBP(N)的功能是你真正想要的。你给它越大的N和给 getcontext().prec 设置越大的值,你就会使计算越精确。让我们看看一些代码结果:

2015417114048612.png (943×261)

这有许多数字位。你可以看出,我们并没有比以前更准确。所以我们需要前进到下一个公式,贝拉公式,希望能获得更好的精度。它看起来像这样:

2015417114133666.png (405×50)

我们将只改变我们的变换公式,其余的代码将保持不变。点击这里下载Python实现的贝拉公式。让我们看一看bellards(n):

def bellard(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1)+Decimal(1)/(10*k+9)-Decimal(64)/(10*k+3)-Decimal(32)/(4*k+1)-Decimal(4)/(10*k+5)-Decimal(4)/(10*k+7)-Decimal(1)/(4*k+3))
    k+=1
  pi=pi*1/(2**6)
  return pi

Copy after login

2015417114158607.png (949×227)

哦,不,我们得到的是同样的精度。好吧,让我们试试第三个公式, Chudnovsky 算法,它看起来是这个样子:

2015417114248773.png (405×50)

再一次,让我们看一下这个计算公式(假设我们有一个阶乘公式)。 点击这里可下载用 python 实现的 Chudnovsky 公式。

下面是程序和输出结果:

def chudnovsky(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))*(13591409+545140134*k)/(640320**(3*k)))
    k+=1
  pi=pi*Decimal(10005).sqrt()/4270934400
  pi=pi**(-1)
  return pi
Copy after login

2015417114314307.png (943×229)

    所以我们有了什么结论?花哨的算法不会使机器浮点世界达到更高标准。我真的很期待能有一个比我们用求和公式时所能得到的更好的精度。我猜那是过分的要求。如果你真的需要用PI,就只需使用math.pi变量了。然而,作为乐趣和测试你的计算机真的能有多快,你总是可以尝试第一个计算出Pi的百万位或者更多位是几。

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template