Home Backend Development Python Tutorial python实现ftp客户端示例分享

python实现ftp客户端示例分享

Jun 06, 2016 am 11:29 AM
ftp client

代码如下:


#!/usr/bin/python
#coding:utf-8
#write:JACK
#info:ftp example
import ftplib, socket, os
from time import sleep, ctime

def LoginFtp(self):
        ftps = ftplib.FTP()
        ftps.connect(self.host,self.port)
        ftps.login(self.name,self.passwd)

#未进行判断地址输入是否为ip或者域名;可以进行判断是否包含class LoFtp(object):
    'this is ftp class example'
    host = str(raw_input('host,127.0.0.1\n'))
    if host == '':host = '127.0.0.1'

    port = raw_input('port,21\n')
    if not(port.isdigit()):port =21

    name = str(raw_input('name,anonymous\n'))
    if name=='':name='anonymous'

    passwd = str(raw_input('password\n'))
    if passwd =='':passwd=''

    def ZqFtp(self,host,name,passwd,port):
        self.host = host
        self.name = name
        self.passwd = passwd
        self.port = port

    def LoginFtp(self):
        self.ftps = ftplib.FTP()
        self.ftps.connect(self.host,self.port)
        self.ftps.login(self.name,self.passwd)
        self.buffer = 2048 #设置缓存大小

    def ShowFtp(self):
        self.LoginFtp()
        self.ftps.dir('/')
        dirs = str(raw_input('PLEASE INPUT DIR!\n'))
        print self.ftps.dir(dirs)


    def UpFtp(self):
        'uploads files'
        self.LoginFtp()
        self.ftps.set_debuglevel(2)
        filename = str(raw_input('PLEASE FILE NAME!\n'))
        file_open=open(filename,'rb') #打开文件 可读即可
        self.ftps.storbinary('STOR %s'% os.path.basename(filename),file_open,self.buffer)
        # 上传文件
        self.ftps.set_debuglevel(0)
        file_open.close()

    def DelFtp(self):
        'Delete Files'
        self.LoginFtp()
        filename=str(raw_input('PLEASE DELETE FILE NAME!\n'))
        self.ftps.delete(filename)

    def RemoveFtp(self):
        'Remove File'
        self.LoginFtp()
        self.ftps.set_debuglevel(2)#调试级别,0无任何信息提示
        oldfile=str(raw_input('PLEASE OLD FILE NAME!\n'))
        newfile=str(raw_input('PLEASE NEW FILE NAME!\n'))
        self.ftps.rename(oldfile,newfile)
        self.ftps.set_debuglevel(0)

    def DownFtp(self):
        'Download File'
        self.LoginFtp()
        self.ftps.set_debuglevel(2)
        filename=str(raw_input('PLEASE FILE NAME!\n'))
        file_down = open(filename,'wb').write
        self.ftps.retrbinary('STOP %s' % os.path.basename(filename),file_down,self.buffer)
        self.ftps.set_debuglevel(0)
        file_down.close()

 

a = LoFtp()
print a.ShowFtp()

while True:
    helpn= str(raw_input('Whether to continue to view or exit immediately!(y/n/q)\n'))
    if (helpn=='y')or(helpn=='Y'):
        dirs = str(raw_input('PLEASE INPUT DIR!\n'))
        a.ftps.dir(dirs)
    elif (helpn=='q')or (helpn=='Q'):
        exit()
    else:
        break

 

while True:
    print '上传请选择----1'
    print '下载请选择----2'
    print '修改FTP文件名称----3'
    num = int(raw_input('PLEASE INPUT NUMBER![exit:5]\n'))

    if num ==1:
        upf = a.UpFtp()
        print 'Upfile ok!'
    elif num ==2:
        dof = a.DownFtp()
        print 'Download file ok!'
    elif num ==3:
        ref = a.RemoveFtp()
        print 'Remove file ok!'
    else:
        a.ftps.quit()
        print 'Bingo!'
        break


#login(user='anonymous',passwd='', acct='') 登录到FTP服务器,所有的参数都是可选的
#pwd()                                     得到当前工作目录
#cwd(path)                                 把当前工作目录设置为path
#dir([path[,...[,cb]])       显示path目录里的内容,可选的参数cb 是一个回调函数,它会被传给retrlines()方法
#nlst([path[,...])           与dir()类似,但返回一个文件名的列表,而不是显示这些文件名
#retrlines(cmd [, cb])       给定FTP 命令(如“RETR filename”),用于下载文本文件。可选的回调函数cb 用于处理文件的每一行
#retrbinary(cmd, cb[,bs=8192[, ra]])        与retrlines()类似,只是这个指令处理二进制文件。回调函数cb 用于处理每一块(块大小默认为8K)下载的数据。
#storlines(cmd, f)           给定FTP 命令(如“STOR filename”),以上传文本文件。要给定一个文件对象f
#storbinary(cmd, f[,bs=8192])               与storlines()类似,只是这个指令处理二进制文件。要给定一个文件对象f,上传块大小bs 默认为8Kbs=8192])
#rename(old, new)            把远程文件old 改名为new
#delete(path)                删除位于path 的远程文件
#mkd(directory)              创建远程目录
#每个需要输入的地方,需要进行排查检错。仅仅这个功能太小了。不过根据实际情况更改,放在bt里边当个小工具即可
#有点烂,没有做任何try

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to Use Python to Find the Zipf Distribution of a Text File How to Use Python to Find the Zipf Distribution of a Text File Mar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

Image Filtering in Python Image Filtering in Python Mar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

How Do I Use Beautiful Soup to Parse HTML? How Do I Use Beautiful Soup to Parse HTML? Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Perform Deep Learning with TensorFlow or PyTorch? How to Perform Deep Learning with TensorFlow or PyTorch? Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Introduction to Parallel and Concurrent Programming in Python Introduction to Parallel and Concurrent Programming in Python Mar 03, 2025 am 10:32 AM

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

How to Implement Your Own Data Structure in Python How to Implement Your Own Data Structure in Python Mar 03, 2025 am 09:28 AM

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and Deserialization of Python Objects: Part 1 Serialization and Deserialization of Python Objects: Part 1 Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Mathematical Modules in Python: Statistics Mathematical Modules in Python: Statistics Mar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

See all articles