Python使用PyGreSQL操作PostgreSQL数据库教程
PostgreSQL是一款功能强大的开源关系型数据库,本文使用python实现了对开源数据库PostgreSQL的常用操作,其开发过程简介如下:
一、环境信息:
1、操作系统:
RedHat Enterprise Linux 4
Windows XP SP2
2、数据库:
PostgreSQL8.3
3、 开发工具:
Eclipse+Pydev+python2.6+PyGreSQL(提供pg模块)
4、说明:
a、PostgreSQL数据库运行于RedHat Linux上,Windows下也要安装pgAdmin(访问PostgreSQL服务器的客户端)。
b、PyGreSQL(即pg)模块下载路径及API手册:http://www.pygresql.org/
PyGreSQL模块点此本站下载
二、配置:
1、将pgAdmin安装路径下以下子目录添加到系统环境变量中:
E:\Program Files\PostgreSQL\8.3\lib
E:\Program Files\PostgreSQL\8.3\bin
2、将python安装目录C:\Python26\Lib\site-packages\pywin32_system32下的dll文件拷贝到C:\WINDOWS\system32
3、说明:如果跳过以上两步,在import pg时将会报错,并且会浪费较长时间才能搞定。
三、程序实现:
#!/usr/bin/env python # -*- coding: utf-8 -*- #导入日志及pg模块 import logging import logging.config import pg #日志配置文件名 LOG_FILENAME = 'logging.conf' #日志语句提示信息 LOG_CONTENT_NAME = 'pg_log' def log_init(log_config_filename, logname): ''' Function:日志模块初始化函数 Input:log_config_filename:日志配置文件名 lognmae:每条日志前的提示语句 Output: logger author: socrates date:2012-02-12 ''' logging.config.fileConfig(log_config_filename) logger = logging.getLogger(logname) return logger def operate_postgre_tbl_product(): ''' Function:操作pg数据库函数 Input:NONE Output: NONE author: socrates date:2012-02-12 ''' pgdb_logger.debug("operate_postgre_tbl_product enter...") #连接数据库 try: pgdb_conn = pg.connect(dbname = 'kevin_test', host = '192.168.230.128', user = 'dyx1024', passwd = '888888') except Exception, e: print e.args[0] pgdb_logger.error("conntect postgre database failed, ret = %s" % e.args[0]) return pgdb_logger.info("conntect postgre database(kevin_test) succ.") #删除表 sql_desc = "DROP TABLE IF EXISTS tbl_product3;" try: pgdb_conn.query(sql_desc) except Exception, e: print 'drop table failed' pgdb_logger.error("drop table failed, ret = %s" % e.args[0]) pgdb_conn.close() return pgdb_logger.info("drop table(tbl_product3) succ.") #创建表 sql_desc = '''CREATE TABLE tbl_product3( i_index INTEGER, sv_productname VARCHAR(32) );''' try: pgdb_conn.query(sql_desc) except Exception, e: print 'create table failed' pgdb_logger.error("create table failed, ret = %s" % e.args[0]) pgdb_conn.close() return pgdb_logger.info("create table(tbl_product3) succ.") #插入记录 sql_desc = "INSERT INTO tbl_product3(sv_productname) values('apple')" try: pgdb_conn.query(sql_desc) except Exception, e: print 'insert record into table failed' pgdb_logger.error("insert record into table failed, ret = %s" % e.args[0]) pgdb_conn.close() return pgdb_logger.info("insert record into table(tbl_product3) succ.") #查询表 1 sql_desc = "select * from tbl_product3" for row in pgdb_conn.query(sql_desc).dictresult(): print row pgdb_logger.info("%s", row) #查询表2 sql_desc = "select * from tbl_test_port" for row in pgdb_conn.query(sql_desc).dictresult(): print row pgdb_logger.info("%s", row) #关闭数据库连接 pgdb_conn.close() pgdb_logger.debug("operate_sqlite3_tbl_product leaving...") if __name__ == '__main__': #初始化日志系统 pgdb_logger = log_init(LOG_FILENAME, LOG_CONTENT_NAME) #操作数据库 operate_postgre_tbl_product()
四、测试:
1、运行后命令行打印结果:
{'sv_productname': 'apple', 'i_index': None} {'i_status': 1, 'i_port': 2, 'i_index': 1} {'i_status': 1, 'i_port': 3, 'i_index': 2} {'i_status': 1, 'i_port': 5, 'i_index': 3} {'i_status': 1, 'i_port': 0, 'i_index': 5} {'i_status': 1, 'i_port': 18, 'i_index': 7} {'i_status': 1, 'i_port': 8, 'i_index': 8} {'i_status': 1, 'i_port': 7, 'i_index': 9} {'i_status': 1, 'i_port': 21, 'i_index': 10} {'i_status': 1, 'i_port': 23, 'i_index': 11} {'i_status': 1, 'i_port': 29, 'i_index': 12} {'i_status': 1, 'i_port': 3000, 'i_index': 4} {'i_status': 1, 'i_port': 1999, 'i_index': 6}
2、日志文件内容:
[2012-02-12 18:09:53,536 pg_log]DEBUG: operate_postgre_tbl_product enter... (test_func.py:36) [2012-02-12 18:09:53,772 pg_log]INFO: conntect postgre database(kevin_test) succ. (test_func.py:46) [2012-02-12 18:09:53,786 pg_log]INFO: drop table(tbl_product3) succ. (test_func.py:58) [2012-02-12 18:09:53,802 pg_log]INFO: create table(tbl_product3) succ. (test_func.py:73) [2012-02-12 18:09:53,802 pg_log]INFO: insert record into table(tbl_product3) succ. (test_func.py:85) [2012-02-12 18:09:53,802 pg_log]INFO: {'sv_productname': 'apple', 'i_index': None} (test_func.py:91) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 2, 'i_index': 1} (test_func.py:97) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 3, 'i_index': 2} (test_func.py:97) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 5, 'i_index': 3} (test_func.py:97) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 0, 'i_index': 5} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 18, 'i_index': 7} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 8, 'i_index': 8} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 7, 'i_index': 9} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 21, 'i_index': 10} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 23, 'i_index': 11} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 29, 'i_index': 12} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 3000, 'i_index': 4} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 1999, 'i_index': 6} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]DEBUG: operate_sqlite3_tbl_product leaving... (test_func.py:101)
3、psql查看结果:
[root@kevin ~]# su - postgres [postgres@kevin ~]$ psql -U dyx1024 -d kevin_test psql (8.4.2) Type "help" for help. kevin_test=# \dt List of relations Schema | Name | Type | Owner --------+---------------+-------+---------------- public | tbl_product3 | table | dyx1024 public | tbl_test_port | table | pg_test_user_3 (2 rows) kevin_test=# select * from tbl_product3; i_index | sv_productname ---------+---------------- | apple (1 row) kevin_test=# select * from tbl_test_port; i_index | i_port | i_status ---------+--------+---------- 1 | 2 | 1 2 | 3 | 1 3 | 5 | 1 5 | 0 | 1 7 | 18 | 1 8 | 8 | 1 9 | 7 | 1 10 | 21 | 1 11 | 23 | 1 12 | 29 | 1 4 | 3000 | 1 6 | 1999 | 1 (12 rows) kevin_test=# \q [postgres@kevin ~]$

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



MySQL has a free community version and a paid enterprise version. The community version can be used and modified for free, but the support is limited and is suitable for applications with low stability requirements and strong technical capabilities. The Enterprise Edition provides comprehensive commercial support for applications that require a stable, reliable, high-performance database and willing to pay for support. Factors considered when choosing a version include application criticality, budgeting, and technical skills. There is no perfect option, only the most suitable option, and you need to choose carefully according to the specific situation.

HadiDB: A lightweight, high-level scalable Python database HadiDB (hadidb) is a lightweight database written in Python, with a high level of scalability. Install HadiDB using pip installation: pipinstallhadidb User Management Create user: createuser() method to create a new user. The authentication() method authenticates the user's identity. fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

It is impossible to view MongoDB password directly through Navicat because it is stored as hash values. How to retrieve lost passwords: 1. Reset passwords; 2. Check configuration files (may contain hash values); 3. Check codes (may hardcode passwords).

MySQL can run without network connections for basic data storage and management. However, network connection is required for interaction with other systems, remote access, or using advanced features such as replication and clustering. Additionally, security measures (such as firewalls), performance optimization (choose the right network connection), and data backup are critical to connecting to the Internet.

MySQL Workbench can connect to MariaDB, provided that the configuration is correct. First select "MariaDB" as the connector type. In the connection configuration, set HOST, PORT, USER, PASSWORD, and DATABASE correctly. When testing the connection, check that the MariaDB service is started, whether the username and password are correct, whether the port number is correct, whether the firewall allows connections, and whether the database exists. In advanced usage, use connection pooling technology to optimize performance. Common errors include insufficient permissions, network connection problems, etc. When debugging errors, carefully analyze error information and use debugging tools. Optimizing network configuration can improve performance

MySQL database performance optimization guide In resource-intensive applications, MySQL database plays a crucial role and is responsible for managing massive transactions. However, as the scale of application expands, database performance bottlenecks often become a constraint. This article will explore a series of effective MySQL performance optimization strategies to ensure that your application remains efficient and responsive under high loads. We will combine actual cases to explain in-depth key technologies such as indexing, query optimization, database design and caching. 1. Database architecture design and optimized database architecture is the cornerstone of MySQL performance optimization. Here are some core principles: Selecting the right data type and selecting the smallest data type that meets the needs can not only save storage space, but also improve data processing speed.

The MySQL connection may be due to the following reasons: MySQL service is not started, the firewall intercepts the connection, the port number is incorrect, the user name or password is incorrect, the listening address in my.cnf is improperly configured, etc. The troubleshooting steps include: 1. Check whether the MySQL service is running; 2. Adjust the firewall settings to allow MySQL to listen to port 3306; 3. Confirm that the port number is consistent with the actual port number; 4. Check whether the user name and password are correct; 5. Make sure the bind-address settings in my.cnf are correct.

As a data professional, you need to process large amounts of data from various sources. This can pose challenges to data management and analysis. Fortunately, two AWS services can help: AWS Glue and Amazon Athena.
