python中List的sort方法指南
简单记一下python中List的sort方法(或者sorted内建函数)的用法。
List的元素可以是各种东西,字符串,字典,自己定义的类等。
sorted函数用法如下:
sorted(data, cmp=None, key=None, reverse=False)
其中,data是待排序数据,可以使List或者iterator, cmp和key都是函数,这两个函数作用与data的元素上产生一个结果,sorted方法根据这个结果来排序。
cmp(e1, e2) 是带两个参数的比较函数, 返回值: 负数: e1 e2. 默认为 None, 即用内建的比较函数.
key 是带一个参数的函数, 用来为每个元素提取比较值. 默认为 None, 即直接比较每个元素.
通常, key 和 reverse 比 cmp 快很多, 因为对每个元素它们只处理一次; 而 cmp 会处理多次.
通过例子来说明sorted的用法:
1. 对由tuple组成的List排序
>>> students = [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10),]
用key函数排序(lambda的用法见 注释1)
>>> sorted(students, key=lambda student : student[2]) # sort by age [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
用cmp函数排序
>>> sorted(students, cmp=lambda x,y : cmp(x[2], y[2])) # sort by age [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
用 operator 函数来加快速度, 上面排序等价于:(itemgetter的用法见 注释2)
>>> from operator import itemgetter, attrgetter >>> sorted(students, key=itemgetter(2))
用 operator 函数进行多级排序
>>> sorted(students, key=itemgetter(1,2)) # sort by grade then by age [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
2. 对由字典排序
>>> d = {'data1':3, 'data2':1, 'data3':2, 'data4':4} >>> sorted(d.iteritems(), key=itemgetter(1), reverse=True) [('data4', 4), ('data1', 3), ('data3', 2), ('data2', 1)]
注释1
参考:http://jasonwu.me/2011/10/29/introduce-to-python-lambda.html
注释2
参考:http://ar.newsmth.net/thread-90745710c90cf1.html
class itemgetter(__builtin__.object) | itemgetter(item, ...) --> itemgetter object | | Return a callable object that fetches the given item(s) from its operand. | After, f=itemgetter(2), the call f(r) returns r[2]. | After, g=itemgetter(2,5,3), the call g(r) returns (r[2], r[5], r[3])
相当于
def itemgetter(i,*a): def func(obj): r = obj[i] if a: r = (r,) + tuple(obj[i] for i in a) return r return func >>> a = [1,2,3] >>> b=operator.itemgetter(1) >>> b(a) 2 >>> b=operator.itemgetter(1,0) >>> b(a) (2, 1) >>> b=itemgetter(1) >>> b(a) 2 >>> b=itemgetter(1,0) >>> b(a) (2, 1)
参考资料:
1. http://www.linuxso.com/linuxbiancheng/13340.html
2. http://www.douban.com/note/13460891/

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

Regular expressions are powerful tools for pattern matching and text manipulation in programming, enhancing efficiency in text processing across various applications.

In Python, how to dynamically create an object through a string and call its methods? This is a common programming requirement, especially if it needs to be configured or run...

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.

Fastapi ...
