如何用数学软件画一个“圣诞树”?
可以是字符的,也可以是图形的
相关问题如何用C语言画一个“圣诞树”? - 编程
回复内容:
我只是搬运http://codegolf.stackexchange.com上的答案,原作者是Silvia (@Silvia ),用的是Mathematica。PD = .5; s[t_, f_] := t^.6 - f dt[cl_, ps_, sg_, hf_, dp_, f_, flag_] := Module[{sv, basePt}, {PointSize[ps], sv = s[t, f]; Hue[cl (1 + Sin[.02 t])/2, 1, .3 + sg .3 Sin[hf sv]], basePt = {-sg s[t, f] Sin[sv], -sg s[t, f] Cos[sv], dp + sv}; Point[basePt], If[flag, {Hue[cl (1 + Sin[.1 t])/2, 1, .6 + sg .4 Sin[hf sv]], PointSize[RandomReal[.01]], Point[basePt + 1/2 RotationTransform[20 sv, {-Cos[sv], Sin[sv], 0}][{Sin[sv], Cos[sv], 0}]]}, {}] }] frames = ParallelTable[ Graphics3D[Table[{ dt[1, .01, -1, 1, 0, f, True], dt[.45, .01, 1, 1, 0, f, True], dt[1, .005, -1, 4, .2, f, False], dt[.45, .005, 1, 4, .2, f, False]}, {t, 0, 200, PD}], ViewPoint -> Left, BoxRatios -> {1, 1, 1.3}, ViewVertical -> {0, 0, -1}, ViewCenter -> {{0.5, 0.5, 0.5}, {0.5, 0.55}}, Boxed -> False, PlotRange -> {{-20, 20}, {-20, 20}, {0, 20}}, Background -> Black], {f, 0, 1, .01}]; Export["tree.gif", frames]
打开一个notebook,然后长按CTRL+/,效果如下:


Clear["`*"]; ifs[prob_,A_,init_,max_]:=FoldList[#2.{#[[1]],#[[2]],1}&,init,RandomChoice[prob->A,max]]; L={{{0.03,0},{0,0.1}},{{0.85,0},{0,0.85}},{{0.8,0},{0,0.8}},{{0.2,-0.08},{0.15,0.22}},{{-0.2,0.08},{0.15,0.22}},{{0.25,-0.1},{0.12,0.25}},{{-0.2,0.1},{0.12,0.2}}}; B=Map[List,{{0,0},{0,1.5},{0,1.5},{0,0.85},{0,0.85},{0,0.3},{0,0.4}},{2}]; {A,prob,init,max}={N@Join[L,B,3],{2,60,10,7,7,7,7}/100.,{0.,2.},10^5}; pts=ifs[prob,A,init,max];//AbsoluteTiming Graphics[{{Darker@Green,PointSize@Tiny,Point@pts},{Hue@Random[],PointSize@Large,Point@#}&/@RandomChoice[pts,200]},AspectRatio->1.5]
( 今年直接手动涂色送happy spring的卡片了,不是程序媛搞不出酷炫的东西好桑心) Wolfram Mathematica 算数学软件吧?

还有这个:

算不算抖机灵 = = 鸡汁的我


by Anselm Ivanovas
====================================
%
<span class="k">function</span> <span class="nf">christmas</span> <span class="c">% Anselm Ivanovas, anselm.ivanovas@student.unisg.ch</span> <span class="c">%Basically just a nice plot for some christmas fun.</span> <span class="c">%3D Plot of a hhristmas tree with some presents and snow</span> <span class="c">%% setup</span> <span class="n">snow</span><span class="p">=</span><span class="mi">800</span><span class="p">;</span> <span class="c">% number of snow flakes [0 .. 5000]</span> <span class="c">%% draw tree</span> <span class="n">h</span><span class="p">=</span><span class="mi">0</span><span class="p">:</span><span class="mf">0.2</span><span class="p">:</span><span class="mi">25</span><span class="p">;</span> <span class="c">%vertical grid</span> <span class="p">[</span><span class="n">X</span><span class="p">,</span><span class="n">Y</span><span class="p">,</span><span class="n">Z</span><span class="p">]</span> <span class="p">=</span> <span class="n">cylinder</span><span class="p">(</span><span class="n">tree</span><span class="p">(</span><span class="n">h</span><span class="p">));</span> <span class="c">%produce a tree formed cylinder</span> <span class="n">Z</span><span class="p">=</span><span class="n">Z</span><span class="o">*</span><span class="mi">25</span><span class="p">;</span> <span class="c">%scale to the right heigth</span> <span class="c">%add some diffusion to the surface of the tree to make it look more real</span> <span class="n">treeDiffusion</span><span class="p">=</span><span class="nb">rand</span><span class="p">(</span><span class="mi">126</span><span class="p">,</span><span class="mi">21</span><span class="p">)</span><span class="o">-</span><span class="mf">0.5</span><span class="p">;</span><span class="c">%some horizontal diffusion data</span> <span class="c">%add diffusion to the grid points</span> <span class="k">for</span> <span class="n">cnt1</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="mi">21</span> <span class="k">for</span> <span class="n">cnt2</span><span class="p">=</span><span class="mi">16</span><span class="p">:</span><span class="mi">126</span><span class="c">%starting above the trunk</span> <span class="c">%get the angle to always diffuse in direction of the radius</span> <span class="nb">angle</span><span class="p">=</span><span class="nb">atan</span><span class="p">(</span><span class="n">Y</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)</span><span class="o">/</span><span class="n">X</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">));</span> <span class="c">%split the diffusion in the two coordinates, depending on the angle</span> <span class="n">X</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)=</span><span class="n">X</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)</span><span class="o">+</span><span class="nb">cos</span><span class="p">(</span><span class="nb">angle</span><span class="p">)</span><span class="o">*</span><span class="n">treeDiffusion</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">);</span> <span class="n">Y</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)=</span><span class="n">Y</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)</span><span class="o">+</span><span class="nb">sin</span><span class="p">(</span><span class="nb">angle</span><span class="p">)</span><span class="o">*</span><span class="n">treeDiffusion</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">);</span> <span class="c">%some Vertical diffusion for each point</span> <span class="n">Z</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)=</span><span class="n">Z</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)</span><span class="o">+</span><span class="p">(</span><span class="nb">rand</span><span class="o">-</span><span class="mf">0.5</span><span class="p">)</span><span class="o">*</span><span class="mf">0.5</span><span class="p">;</span> <span class="k">end</span> <span class="k">end</span> <span class="c">%draw the tree</span> <span class="n">surfl</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">Y</span><span class="p">,</span><span class="n">Z</span><span class="p">,</span><span class="s">'light'</span><span class="p">)</span> <span class="c">%% View and format</span> <span class="c">%Use as nice green color map (darker at the bottom, lighter at the top)</span> <span class="n">r</span><span class="p">=(</span><span class="mf">0.0430</span><span class="p">:(</span><span class="mf">0.2061</span><span class="o">/</span><span class="mi">50</span><span class="p">):</span><span class="mf">0.2491</span><span class="p">)</span><span class="o">'</span><span class="p">;</span><span class="c">%red component</span> <span class="n">g</span><span class="p">=(</span><span class="mf">0.2969</span><span class="p">:(</span><span class="mf">0.4012</span><span class="o">/</span><span class="mi">50</span><span class="p">):</span><span class="mf">0.6981</span><span class="p">)</span><span class="o">'</span><span class="p">;</span><span class="c">%green component</span> <span class="n">b</span><span class="p">=(</span><span class="mf">0.0625</span><span class="p">:(</span><span class="mf">0.2696</span><span class="o">/</span><span class="mi">50</span><span class="p">):</span><span class="mf">0.3321</span><span class="p">)</span><span class="o">'</span><span class="p">;</span><span class="c">%blue component</span> <span class="n">map</span><span class="p">=[</span><span class="n">r</span><span class="p">,</span><span class="n">g</span><span class="p">,</span><span class="n">b</span><span class="p">];</span><span class="c">%join in a map</span> <span class="k">for</span> <span class="n">cnt</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="mi">6</span> <span class="c">%change the lower part to brown for the trunk</span> <span class="n">map</span><span class="p">(</span><span class="n">cnt</span><span class="p">,:)=[</span><span class="mi">77</span><span class="p">,</span><span class="mi">63</span><span class="p">,</span><span class="mi">5</span><span class="p">]</span><span class="o">/</span><span class="mi">265</span><span class="p">;</span> <span class="k">end</span> <span class="n">colormap</span><span class="p">(</span><span class="n">map</span><span class="p">)</span><span class="c">%set the map</span> <span class="n">view</span><span class="p">([</span><span class="o">-</span><span class="mf">37.5</span><span class="p">,</span><span class="mi">4</span><span class="p">])</span><span class="c">%Change the view to see a little more of the Actual 3D tree</span> <span class="n">lighting</span> <span class="n">phong</span> <span class="c">%some nice lighting</span> <span class="n">shading</span> <span class="n">interp</span> <span class="c">%remove grid and smoothen the surface color</span> <span class="n">axis</span> <span class="n">equal</span> <span class="c">%takes care of display in the right proportion</span> <span class="n">axis</span><span class="p">([</span><span class="o">-</span><span class="mi">10</span> <span class="mi">10</span> <span class="o">-</span><span class="mi">10</span> <span class="mi">10</span> <span class="mi">0</span> <span class="mi">30</span><span class="p">])</span> <span class="c">%give some more axis space (for the snow later)</span> <span class="n">axis</span> <span class="n">off</span> <span class="c">%but don't show axis</span> <span class="n">hold</span> <span class="n">on</span> <span class="c">%to draw the rest</span> <span class="n">title</span><span class="p">(</span><span class="s">'Merry Christmas 知乎er'</span><span class="p">)</span><span class="c">%self explaining</span> <span class="c">%% Presents</span> <span class="c">%Draw some presents around the tree (each with random color)</span> <span class="n">drawPresent</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">2</span><span class="p">);</span> <span class="n">drawPresent</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mf">1.5</span><span class="p">);</span> <span class="n">drawPresent</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">);</span> <span class="n">drawPresent</span><span class="p">(</span><span class="o">-</span><span class="mi">14</span><span class="p">,</span><span class="o">-</span><span class="mi">5</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">);</span> <span class="n">drawPresent</span><span class="p">(</span><span class="o">-</span><span class="mi">9</span><span class="p">,</span><span class="o">-</span><span class="mi">10</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">);</span> <span class="n">drawPresent</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">);</span> <span class="n">drawPresent</span><span class="p">(</span><span class="o">-</span><span class="mi">6</span><span class="p">,</span><span class="o">-</span><span class="mi">13</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">);</span> <span class="c">%% Snow</span> <span class="c">%create some random 3D coordinates for the snow (amount as in setup above)</span> <span class="n">snowX</span><span class="p">=(</span><span class="nb">rand</span><span class="p">(</span><span class="n">snow</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">*</span><span class="mi">25</span><span class="o">-</span><span class="mf">12.5</span><span class="p">);</span> <span class="n">snowY</span><span class="p">=(</span><span class="nb">rand</span><span class="p">(</span><span class="n">snow</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">*</span><span class="mi">25</span><span class="o">-</span><span class="mf">12.5</span><span class="p">);</span> <span class="n">snowZ</span><span class="p">=(</span><span class="nb">rand</span><span class="p">(</span><span class="n">snow</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">*</span><span class="mi">27</span><span class="p">);</span> <span class="c">%Note:Some flakes will end up IN the tree but just can't be seen then</span> <span class="n">plot3</span><span class="p">(</span><span class="n">snowX</span><span class="p">,</span><span class="n">snowY</span><span class="p">,</span><span class="n">snowZ</span><span class="p">,</span><span class="s">'w*'</span><span class="p">)</span><span class="c">%plot coordinates as white snow flakes</span> <span class="n">hold</span> <span class="n">off</span><span class="c">%Done</span> <span class="k">end</span> <span class="c">% of function</span> <span class="c">%% ============= private functions</span> <span class="k">function</span><span class="w"> </span>r<span class="p">=</span><span class="nf">tree</span><span class="p">(</span>h<span class="p">)</span><span class="c">%Gives a profile for the tree</span> <span class="k">for</span> <span class="n">cnt</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="nb">length</span><span class="p">(</span><span class="n">h</span><span class="p">)</span> <span class="k">if</span><span class="p">(</span><span class="n">h</span><span class="p">(</span><span class="n">cnt</span><span class="p">)</span><span class="o">==</span><span class="mi">0</span><span class="p">)</span><span class="c">%no Width at the bottom. Ensures a "closed" trunk</span> <span class="n">r</span><span class="p">(</span><span class="n">cnt</span><span class="p">)=</span><span class="mi">0</span><span class="p">;</span> <span class="k">end</span> <span class="c">%smaller radius for the trunk</span> <span class="k">if</span> <span class="p">(</span><span class="n">h</span><span class="p">(</span><span class="n">cnt</span><span class="p">)</span><span class="o">></span><span class="mi">0</span> <span class="o">&&</span> <span class="n">h</span><span class="p">(</span><span class="n">cnt</span><span class="p">)</span><span class="o"><</span><span class="p">=</span><span class="mi">3</span><span class="p">)</span> <span class="n">r</span><span class="p">(</span><span class="n">cnt</span><span class="p">)=</span><span class="mf">1.5</span><span class="p">;</span> <span class="k">end</span> <span class="c">%reduce radius gradually from 8 to 0. Note: will only work with a trunk heigth</span> <span class="c">%of 3 and a whole tree heigth of 25. Scale the height of the tree in</span> <span class="c">%the "draw tree" section, since the cylinder command will return a 1</span> <span class="c">%unit high cylinder anyway</span> <span class="k">if</span><span class="p">(</span><span class="n">h</span><span class="p">(</span><span class="n">cnt</span><span class="p">)</span><span class="o">></span><span class="mi">3</span><span class="p">)</span> <span class="n">r</span><span class="p">(</span><span class="n">cnt</span><span class="p">)=</span><span class="mi">8</span><span class="o">-</span><span class="p">(</span><span class="n">h</span><span class="p">(</span><span class="n">cnt</span><span class="p">)</span><span class="o">-</span><span class="mi">3</span><span class="p">)</span><span class="o">*</span><span class="mf">0.3636</span><span class="p">;</span> <span class="k">end</span> <span class="k">end</span> <span class="k">end</span> <span class="c">% of function</span> <span class="c">%Draws a present with the given coordinate + size in a random color</span> <span class="c">%Note:Given coordinates apply to the lower front + left corner of the</span> <span class="c">%present (the one closest to the viewer) as seen in the plot</span> <span class="k">function</span><span class="w"> </span><span class="nf">drawPresent</span><span class="p">(</span>dx,dy,dz,scalex,scaley,scalez<span class="p">)</span><span class="w"></span> <span class="c">%the standard present coordinates</span> <span class="n">presentX</span><span class="p">=[</span><span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span><span class="p">];</span> <span class="n">presentY</span><span class="p">=[</span><span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span><span class="p">;</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span><span class="p">];</span> <span class="n">presentZ</span><span class="p">=[</span><span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span><span class="p">;</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span><span class="p">;</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span><span class="p">];</span> <span class="c">%draw some presents with random colors</span> <span class="c">%scale present and move it to the right place and get the plot handle</span> <span class="n">myHandle</span><span class="p">=</span><span class="n">surf</span><span class="p">((</span><span class="n">presentX</span><span class="o">*</span><span class="n">scalex</span><span class="o">+</span><span class="n">dx</span><span class="p">),(</span><span class="n">presentY</span><span class="o">*</span><span class="n">scaley</span><span class="o">+</span><span class="n">dy</span><span class="p">),</span> <span class="p">(</span><span class="n">presentZ</span><span class="o">*</span><span class="n">scalez</span><span class="o">+</span><span class="n">dz</span><span class="p">));</span> <span class="c">%some random color map</span> <span class="n">randColorMap</span><span class="p">(:,:,</span><span class="mi">1</span><span class="p">)=</span><span class="nb">repmat</span><span class="p">(</span><span class="nb">rand</span><span class="p">,[</span><span class="mi">5</span><span class="p">,</span><span class="mi">5</span><span class="p">]);</span><span class="c">%r component</span> <span class="n">randColorMap</span><span class="p">(:,:,</span><span class="mi">2</span><span class="p">)=</span><span class="nb">repmat</span><span class="p">(</span><span class="nb">rand</span><span class="p">,[</span><span class="mi">5</span><span class="p">,</span><span class="mi">5</span><span class="p">]);</span><span class="c">%g component</span> <span class="n">randColorMap</span><span class="p">(:,:,</span><span class="mi">3</span><span class="p">)=</span><span class="nb">repmat</span><span class="p">(</span><span class="nb">rand</span><span class="p">,[</span><span class="mi">5</span><span class="p">,</span><span class="mi">5</span><span class="p">]);</span><span class="c">%b component</span> <span class="c">%Assign colormap just to the plot handle object of the present, so the tree</span> <span class="c">%does not change color</span> <span class="n">set</span><span class="p">(</span><span class="n">myHandle</span><span class="p">,</span><span class="s">'CData'</span><span class="p">,</span><span class="n">randColorMap</span><span class="p">)</span> <span class="n">shading</span> <span class="n">interp</span> <span class="c">%Nice shding + without grid</span> <span class="k">end</span> <span class="c">% of function</span>
R语言 能画,但是这种比较有什么意义呢..................................

<span class="go">L <- matrix(</span> <span class="go"> c(0.03, 0, 0 , 0.1,</span> <span class="go"> 0.85, 0.00, 0.00, 0.85,</span> <span class="go"> 0.8, 0.00, 0.00, 0.8,</span> <span class="go"> 0.2, -0.08, 0.15, 0.22,</span> <span class="go"> -0.2, 0.08, 0.15, 0.22,</span> <span class="go"> 0.25, -0.1, 0.12, 0.25,</span> <span class="go"> -0.2, 0.1, 0.12, 0.2),</span> <span class="go"> nrow=4)</span> <span class="go"># ... and each row is a translation vector</span> <span class="go">B <- matrix(</span> <span class="go"> c(0, 0,</span> <span class="go"> 0, 1.5,</span> <span class="go"> 0, 1.5,</span> <span class="go"> 0, 0.85,</span> <span class="go"> 0, 0.85,</span> <span class="go"> 0, 0.3,</span> <span class="go"> 0, 0.4),</span> <span class="go"> nrow=2)</span> <span class="go">prob = c(0.02, 0.6,.08, 0.07, 0.07, 0.07, 0.07)</span> <span class="go"># Iterate the discrete stochastic map </span> <span class="go">N = 1e5 #5 # number of iterations </span> <span class="go">x = matrix(NA,nrow=2,ncol=N)</span> <span class="go">x[,1] = c(0,2) # initial point</span> <span class="go">k <- sample(1:7,N,prob,replace=TRUE) # values 1-7 </span> <span class="go">for (i in 2:N) </span> <span class="go"> x[,i] = crossprod(matrix(L[,k[i]],nrow=2),x[,i-1]) + B[,k[i]] # iterate </span> <span class="go"># Plot the iteration history </span> <span class="go">png('card.png')</span> <span class="go">par(bg='darkblue',mar=rep(0,4)) </span> <span class="go">plot(x=x[1,],y=x[2,],</span> <span class="go"> col=grep('green',colors(),value=TRUE),</span> <span class="go"> axes=FALSE,</span> <span class="go"> cex=.1,</span> <span class="go"> xlab='',</span> <span class="go"> ylab='' )#,pch='.')</span> <span class="go">bals <- sample(N,20)</span> <span class="go">points(x=x[1,bals],y=x[2,bals]-.1,</span> <span class="go"> col=c('red','blue','yellow','orange'),</span> <span class="go"> cex=2,</span> <span class="go"> pch=19</span> <span class="go">)</span> <span class="go">text(x=-.7,y=8,</span> <span class="go"> labels='Merry',</span> <span class="go"> adj=c(.5,.5),</span> <span class="go"> srt=45,</span> <span class="go"> vfont=c('script','plain'),</span> <span class="go"> cex=3,</span> <span class="go"> col='gold'</span> <span class="go">)</span> <span class="go">text(x=0.7,y=8,</span> <span class="go"> labels='Christmas',</span> <span class="go"> adj=c(.5,.5),</span> <span class="go"> srt=-45,</span> <span class="go"> vfont=c('script','plain'),</span> <span class="go"> cex=3,</span> <span class="go"> col='gold'</span> <span class="go">)</span> <span class="go">dev.off()</span>

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.
