Table of Contents
回复内容:
Home Backend Development Python Tutorial Python 的类的下划线命名有什么不同?

Python 的类的下划线命名有什么不同?

Jun 06, 2016 pm 04:23 PM

1,以一个下划线开头的命名 ,如_getFile
2,以两个下划线开头的命名 ,如__filename
3,以两个下划线开头和结尾的命名,如 __init__()
4,其它
这些命名有什么不同吗?

回复内容:

首先是单下划线开头,这个被常用于模块中,在一个模块中以单下划线开头的变量和函数被默认当作内部函数,如果使用 from a_module import * 导入时,这部分变量和函数不会被导入。不过值得注意的是,如果使用 import a_module 这样导入模块,仍然可以用 a_module._some_var 这样的形式访问到这样的对象。

在 Python 的官方推荐的代码样式中,还有一种单下划线结尾的样式,这在解析时并没有特别的含义,但通常用于和 Python 关键词区分开来,比如如果我们需要一个变量叫做 class,但 class 是 Python 的关键词,就可以以单下划线结尾写作 class_。

双下划线开头的命名形式在 Python 的类成员中使用表示名字改编 (Name Mangling),即如果有一 Test 类里有一成员 __x,那么 dir(Test) 时会看到 _Test__x 而非 __x。这是为了避免该成员的名称与子类中的名称冲突。但要注意这要求该名称末尾没有下划线。

双下划线开头双下划线结尾的是一些 Python 的“魔术”对象,如类成员的 __init__、__del__、__add__、__getitem__ 等,以及全局的 __file__、__name__ 等。 Python 官方推荐永远不要将这样的命名方式应用于自己的变量或函数,而是按照文档说明来使用。

另外单下划线开头还有一种一般不会用到的情况在于使用一个 C 编写的扩展库有时会用下划线开头命名,然后使用一个去掉下划线的 Python 模块进行包装。如 struct 这个模块实际上是 C 模块 _struct 的一个 Python 包装。

更多关于命名的内容可以参考 PEP 8 《代码风格指南》的 Name Conventions 一节:python.org/dev/peps/pep

需要说明的是,由于这份文档看起来经过多次修改,双下划线开头的用法似乎曾经如 @makestory 所说,建议为类的私有成员,至少啄木鸟社区的 PEP 8 译文是这样写的,但 PEP 8 当前的官方版本中并没有体现。

啄木鸟的译文参考:wiki.woodpecker.org.cn/
另找到一份较新的译文参考:code.google.com/p/zhong 参考我翻译的一篇译文:
Python中的下划线(译文) [sorry 之前的回答有个失误,私有方法应该是双下划线,已更正]
这不是类的命名吧?应该是类方法的。
两个下划线开头的,是一个私有方法命名,但是python的私有方法并不是一个真正的私有方法,因为它还是能够被外部访问的,只不过是不能被简单的直接调用了。
以两个下划线开头和结尾的命名,都是一些特殊的方法,成为一些操作符或某些行为的钩子(比如 加减乘除、初始化、迭代等)。

单下划线的我不知道,但是有个常见用法是 _() 用于做 i18n 。比如 _('hello') = > '你好' pyton2.7中,模块中的单下划线和双下划线开头的成员都是私有成员,不能用from module import *访问,但是可以用import module访问
  • object.__format__()这里边的下划线是什么意思的呢

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to Use Python to Find the Zipf Distribution of a Text File How to Use Python to Find the Zipf Distribution of a Text File Mar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML? How Do I Use Beautiful Soup to Parse HTML? Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Perform Deep Learning with TensorFlow or PyTorch? How to Perform Deep Learning with TensorFlow or PyTorch? Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Mathematical Modules in Python: Statistics Mathematical Modules in Python: Statistics Mar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and Deserialization of Python Objects: Part 1 Serialization and Deserialization of Python Objects: Part 1 Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

What are some popular Python libraries and their uses? What are some popular Python libraries and their uses? Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

How to Create Command-Line Interfaces (CLIs) with Python? How to Create Command-Line Interfaces (CLIs) with Python? Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

Scraping Webpages in Python With Beautiful Soup: Search and DOM Modification Scraping Webpages in Python With Beautiful Soup: Search and DOM Modification Mar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

See all articles