使用yield可以做哪些很酷的事情?
使用生成器(Generator)和yield可以做哪些有趣的、酷酷的、让人意想不到的事情?
不限编程语言,例如python、JavaScript 等。
回复内容:
yield 在 JavaScript 中用的最多的可能就是结合 Promise/Thunk 等实现异步操作,比如大名鼎鼎的 tj/co · GitHub,所以已经不是「让人意想不到」的东西了。理解 Generator 的特性后,实现一个玩具版的 co 还是很简单的:
function async(generator) { return new Promise(function(resolve, reject) { var g = generator() function next(val) { var result = g.next(val) var value = result.value if (!result.done) { value.then(next).catch(reject) } else { resolve(value) } } next() }) }
不了解yield怎么实现async/await的,用C#代码试举一例:
IEnumerable<Action<Action>> SomeAsyncMethod() { //blabla yield return await( asyncMethod, context ); //blabla yield return await( asyncMethod, context ); //blabla }
<span class="c"># -*- coding: utf-8 -*-</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span> <span class="kn">import</span> <span class="nn">matplotlib.animation</span> <span class="kn">as</span> <span class="nn">animation</span> <span class="kn">import</span> <span class="nn">math</span><span class="o">,</span> <span class="nn">random</span> <span class="c"># 需要安装的库:Numpy和Matplotlib,推荐直接Anaconda</span> <span class="n">fig</span><span class="p">,</span> <span class="n">axes1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">()</span> <span class="c"># 设置坐标轴长度</span> <span class="n">axes1</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">1.4</span><span class="p">)</span> <span class="n">axes1</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">/</span><span class="mf">0.01</span><span class="p">)</span> <span class="c"># 设置初始x、y数值数组</span> <span class="n">xdata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span> <span class="n">ydata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">xdata</span><span class="p">)</span> <span class="c"># 获得线条</span> <span class="n">line</span><span class="p">,</span> <span class="o">=</span> <span class="n">axes1</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">xdata</span><span class="p">)</span> <span class="c"># 毛刺倍率,从0开始增长,offset越大毛刺越大</span> <span class="n">offset</span> <span class="o">=</span> <span class="mf">0.0</span> <span class="c">#因为update的参数是调用函数data_gen,所以第一个默认参数不能是framenum</span> <span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="n">data</span><span class="p">):</span> <span class="k">global</span> <span class="n">offset</span> <span class="n">line</span><span class="o">.</span><span class="n">set_ydata</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="k">return</span> <span class="n">line</span><span class="p">,</span> <span class="c"># 每次生成10个随机数据</span> <span class="c"># 每次变化整幅图的话,yield一个整图就行了</span> <span class="k">def</span> <span class="nf">data_gen</span><span class="p">():</span> <span class="k">global</span> <span class="n">offset</span> <span class="k">while</span> <span class="bp">True</span><span class="p">:</span> <span class="n">length</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">xdata</span><span class="p">))</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">xdata</span><span class="p">)):</span> <span class="n">ydata</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">=</span><span class="n">math</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">xdata</span><span class="p">[</span><span class="n">i</span><span class="p">])</span><span class="o">+</span><span class="mf">0.2</span> <span class="k">if</span> <span class="n">i</span><span class="o">></span><span class="n">length</span><span class="o">/</span><span class="mf">18.0</span> <span class="ow">and</span> <span class="n">i</span><span class="o"><</span><span class="p">(</span><span class="n">length</span><span class="o">*</span><span class="mf">2.7</span><span class="o">/</span><span class="mf">6.0</span><span class="p">):</span> <span class="n">ydata</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">+=</span><span class="n">offset</span><span class="o">*</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">()</span><span class="o">-</span><span class="mf">0.5</span><span class="p">)</span> <span class="n">offset</span> <span class="o">+=</span> <span class="mf">0.05</span> <span class="c">#可以设置offset的最大值</span> <span class="k">if</span> <span class="n">offset</span><span class="o">>=</span><span class="mf">0.5</span><span class="p">:</span> <span class="n">offset</span><span class="o">=</span><span class="mf">0.0</span> <span class="k">yield</span> <span class="n">ydata</span> <span class="c"># 配置完毕,开始播放</span> <span class="n">ani</span> <span class="o">=</span> <span class="n">animation</span><span class="o">.</span><span class="n">FuncAnimation</span><span class="p">(</span><span class="n">fig</span><span class="p">,</span> <span class="n">update</span><span class="p">,</span> <span class="n">data_gen</span><span class="p">,</span> <span class="n">interval</span><span class="o">=</span><span class="mi">800</span><span class="p">,</span> <span class="n">repeat</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
Overview — SimPy 3.0.8 documentation 这个问题就是给我准备的嘛
当有人声称在CPython里实现了一个沙盒的时候就可以用yield去逗他了,I was looking through the code and saw someone submitted this but didn't run it:...
酷到没工作... A Curious Course on Coroutines and Concurrency 可以写出一个并发的库
Generator Tricks for Systems Programmers 可以写个流处理框架 参见David Beazley大神几次PyCon的pdf,看完我简直是惊呆了。http://www.dabeaz.com 可以用来训练神经网络.
比如Lasagne/Lasagne · GitHub 中的一段示例代码:
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="n">iter_funcs</span><span class="p">,</span> <span class="n">dataset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">BATCH_SIZE</span><span class="p">):</span> <span class="sd">"""Train the model with `dataset` with mini-batch training. Each</span> <span class="sd"> mini-batch has `batch_size` recordings.</span> <span class="sd"> """</span> <span class="n">num_batches_train</span> <span class="o">=</span> <span class="n">dataset</span><span class="p">[</span><span class="s">'num_examples_train'</span><span class="p">]</span> <span class="o">//</span> <span class="n">batch_size</span> <span class="n">num_batches_valid</span> <span class="o">=</span> <span class="n">dataset</span><span class="p">[</span><span class="s">'num_examples_valid'</span><span class="p">]</span> <span class="o">//</span> <span class="n">batch_size</span> <span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="n">itertools</span><span class="o">.</span><span class="n">count</span><span class="p">(</span><span class="mi">1</span><span class="p">):</span> <span class="n">batch_train_losses</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_batches_train</span><span class="p">):</span> <span class="n">batch_train_loss</span> <span class="o">=</span> <span class="n">iter_funcs</span><span class="p">[</span><span class="s">'train'</span><span class="p">](</span><span class="n">b</span><span class="p">)</span> <span class="n">batch_train_losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_train_loss</span><span class="p">)</span> <span class="n">avg_train_loss</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_train_losses</span><span class="p">)</span> <span class="n">batch_valid_losses</span> <span class="o">=</span> <span class="p">[]</span> <span class="n">batch_valid_accuracies</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_batches_valid</span><span class="p">):</span> <span class="n">batch_valid_loss</span><span class="p">,</span> <span class="n">batch_valid_accuracy</span> <span class="o">=</span> <span class="n">iter_funcs</span><span class="p">[</span><span class="s">'valid'</span><span class="p">](</span><span class="n">b</span><span class="p">)</span> <span class="n">batch_valid_losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_valid_loss</span><span class="p">)</span> <span class="n">batch_valid_accuracies</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_valid_accuracy</span><span class="p">)</span> <span class="n">avg_valid_loss</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_valid_losses</span><span class="p">)</span> <span class="n">avg_valid_accuracy</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_valid_accuracies</span><span class="p">)</span> <span class="k">yield</span> <span class="p">{</span> <span class="s">'number'</span><span class="p">:</span> <span class="n">epoch</span><span class="p">,</span> <span class="s">'train_loss'</span><span class="p">:</span> <span class="n">avg_train_loss</span><span class="p">,</span> <span class="s">'valid_loss'</span><span class="p">:</span> <span class="n">avg_valid_loss</span><span class="p">,</span> <span class="s">'valid_accuracy'</span><span class="p">:</span> <span class="n">avg_valid_accuracy</span><span class="p">,</span> <span class="p">}</span>

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

XML can be converted to images by using an XSLT converter or image library. XSLT Converter: Use an XSLT processor and stylesheet to convert XML to images. Image Library: Use libraries such as PIL or ImageMagick to create images from XML data, such as drawing shapes and text.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.
