全python项目,使用protobufThrift适合吗?
我现在在做一个全python的集群项目,用的xmlrpc去做各服务通信。
但是xmlrpc的使用太恶心,而且异常全部转换成了xmlrpc的Fault类型。
很不好转换,所以想吧我们的通信库换一下。
但是其他人说,又不是跨语言,没必要用到这些东西,简单就行。
各位怎么看呢?
回复内容:
早些年仔细研究过protobuf和thrift,并分别分享过。ProtoBuf开发者指南:
http://gashero.yeax.com/?p=108
在较长时期都是国内最全的一份翻译。
thrift也做过一份1万来字的文档,但并没有公布。
这两种序列化技术我都在实际项目中用过,2010年前后。在这之后就没有再用。
从序列化的角度,两者相似程度很高,效率方面也都是顶级的水平,无论是存储效率还是压缩/解包效率。
至于RPC方面,截至到2010年,protobuf没有官方的方案,thrift的则是线程池实现,经常卡死,很烂。所以至少那个时代,两者用做RPC都不靠谱。
最关键的问题来自如下几点:
1、难于调试:都是二进制协议,序列化后的内容不可读
2、安装繁琐恶心:都要安装很久,编译一堆东西
3、对多语言支持有限:最近几年新语言出的太快了
4、对WEB不友好:js没有原生支持
所以,逐渐就不用了。现在遇到类似的需求都是用HTTP里面封装JSON的。所以调用的请求用form提交,这样用网页上的表单就能模拟。返回的是一个dict,其中errnum表示错误码,0为成功。errmsg为错误信息,方便客户端调试。result为实际返回的数据。
这样的方式调试方便,兼容性好。虽然慢了不少,但其实人的效率更重要。
另外,年轻人要小心overdesign,也许你的应用终生都不会有大的性能压力。 protobuf只是一种serialization的协议,thrift才是一个完整的服务级别的rpc协议(最近grpc也开源了,基本等于Google的thrift,最近准备在go里面玩玩儿)
其实用Thrift省事儿多了,thrift文件作为一个service model是语言无关的,而且可以同时生成server和client,还自带type check。定义好接口,就可以专心去实现业务逻辑了。 可以,厂里一部分用的 Thrift protobuf我没有用过,但是做过一些功课,它的python库质量不错,个人觉得如果不是很有针对性的,特别适合xml的,倒是真可以用它。 现在 RPC 通信框架里比较成熟的就是 Thrift 了,是用C++实现的,我呆了两家互联网公司,都用这个。最早是 Facebook 写的,国内的话规模比较大的据我所知百度也在用。有个传言的八卦是 protobuffer 是早期在 Google 内部流行的,后来有员工跳槽到了 Facebook 才有了 Thrift。
Thrift 的 RPC 框架中像 block, nonblock 的功能都有了,protobuf 好像一心一意做好自己的事情,只提供了序列化和反序列化的功能。 所以你说要我来做抉择,肯定是上 Thrift。
况且,Thrift 一点也不复杂,定义一个传输接口的配置文件就完事了,后面的事情 Thrift 一条龙服务。 最近被GRPC搞到瘋,我是不會告訴你GRPC不支持Python 3的,啊哈哈哈哈 你知道Thrift发布多少年了,至今版本号仍然只是 0.9.2 吗?
老夫作为国内第一批吃螃蟹的,有半年基本上天天在帮别人解决thrift bug问题...后来果断弃坑,加入微软WCF大军。 我想知道有人用这个吗?
Cap'n Proto: Introduction
PS:有Python实现
Welcome to pycapnp’s documentation! thrift 有RPC。 protobuf 就今年Google刚开源grpc只不过还在alpha Thrift是我来现在的这家互联网公司,开始接触的,2007年Facebook发起的项目。
主要是用在后端 internal services,所在互联网公司,thrift是后端服务RPC通信的基础。对题主所在的项目应该是足够的。
同样也是基于python构建的主要后端服务,框架组开源了下面的对thrift封装的库,比较方便的构建服务和客户端的接入。
eleme/thriftpy · GitHub
定义如下pingpong.thrift
service PingPong { string ping(), }

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.
