python下同样代码,多核多线程为什么比单核多线程慢很多?
有一个疑问:python的多线程性能问题,本来以为是GIL的竞争导致的多线程下特别慢。但是在单cpu上的多线程性能下降并不明显,但是同样的代码到了多核上之后,性能下降特别明显。那么在多核下的多线程性能明显下降的原因是cpu的频繁切换导致的么? 主要问题应该是:【多CPU之间的频繁切换会有消耗么?】
【备注】:已经明白了为什么需要GIL以及GIL导致的同一时间只能执行一个线程。想问的问题是python在多cpu之间的执行细节。
回复内容:
python 由于有全局解释器锁,线程不支持多cpu。如果想支持多cpu,请用多进程。Python的GIL
- CPython的线程是操作系统的原生线程。在Linux上为pthread,在Windows上为Win thread,完全由操作系统调度线程的执行。一个python解释器进程内有一条主线程,以及多条用户程序的执行线程。即使在多核CPU平台上,由于GIL的存在,所以禁止多线程的并行执行。
- Python解释器进程内的多线程是合作多任务方式执行。当一个线程遇到I/O任务时,将释放GIL。计算密集型(CPU-bound)的线程在执行大约100次解释器的计步(ticks)时,将释放GIL。计步(ticks)可粗略看作Python虚拟机的指令。计步实际上与时间片长度无关。可以通过sys.setcheckinterval()设置计步长度。
- 在单核CPU上,数百次的间隔检查才会导致一次线程切换。在多核CPU上,存在严重的线程颠簸(thrashing)。
- Python 3.2开始使用新的GIL。在新的GIL实现中,用一个固定的超时时间来指示当前的线程放弃全局锁。在当前线程保持这个锁,且其他线程请求这个锁的时候,当前线程就会在5ms后被强制释放掉这个锁。
- 可以创建独立的进程来实现并行化。Python 2.6引进了multiprocessing这个多进程包。或者把关键部分用C/C++写成 Python 扩展,通过cytpes使Python程序直接调用C语言编译的动态库的导出函数。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

To convert XML images, you need to determine the XML data structure first, then select a suitable graphical library (such as Python's matplotlib) and method, select a visualization strategy based on the data structure, consider the data volume and image format, perform batch processing or use efficient libraries, and finally save it as PNG, JPEG, or SVG according to the needs.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.
