[原创]如何从数据库层面检测两表内容的一致性
一般来说呢,如何检测两张表的内容是否一致,这样的需求大多在从机上体现,以保证数据一致性。方法无非有两个,第一呢就是从数据库着手,第二呢就是从应用程序端着手。 我这里罗列了些如何从数据库层面来解决此类问题的方法。 当然第一步就是检查记录数是否
一般来说呢,如何检测两张表的内容是否一致,这样的需求大多在从机上体现,以保证数据一致性。方法无非有两个,第一呢就是从数据库着手,第二呢就是从应用程序端着手。 我这里罗列了些如何从数据库层面来解决此类问题的方法。
当然第一步就是检查记录数是否一致,否则不用想任何其他方法了。
这里我们用两张表t1_old,t1_new来演示。
表结构: CREATE TABLE t1_old ( id int(11) NOT NULL, log_time timestamp DEFAULT NULL ) ; CREATE TABLE t1_new ( id int(11) NOT NULL, log_time timestamp DEFAULT NULL ) ; 两表的记录数都为100条。 mysql> select count(*) from t1_old; +----------+ | count(*) | +----------+ | 100 | +----------+ 1 row in set (0.31 sec) mysql> select count(*) from t1_new; +----------+ | count(*) | +----------+ | 100 | +----------+ 1 row in set (0.00 sec)
方法一:用加法然后去重。
由于Union 本身具备把上下两条连接的记录做唯一性排序,所以这样检测来的非常简单。 mysql> select count(*) from (select * from t1_old union select * from t1_new) as T; +----------+ | count(*) | +----------+ | 100 | +----------+ 1 row in set (0.06 sec) 这里的记录数为100,初步证明两表内容一致。但是,这个方法有个BUG,在某些情形下不能简单表示结果集一致。 比如: mysql> create table t1_old1 (id int); Query OK, 0 rows affected (0.27 sec) mysql> create table t1_new1(id int); Query OK, 0 rows affected (0.09 sec) mysql> insert into t1_old1 values (1),(2),(3),(5); Query OK, 4 rows affected (0.15 sec) Records: 4 Duplicates: 0 Warnings: 0 mysql> insert into t1_new1 values (2),(2),(3),(5); Query OK, 4 rows affected (0.02 sec) Records: 4 Duplicates: 0 Warnings: 0 mysql> select * from t1_old1; +------+ | id | +------+ | 1 | | 2 | | 3 | | 5 | +------+ 4 rows in set (0.00 sec) mysql> select * from t1_new1; +------+ | id | +------+ | 2 | | 2 | | 3 | | 5 | +------+ 4 rows in set (0.00 sec) mysql> select count(*) from (select * from t1_old1 union select * from t1_new1) as T; +----------+ | count(*) | +----------+ | 4 | +----------+ 1 row in set (0.00 sec) mysql> 所以在这点上,这个方法等于是无效。
方法二: 用减法来归零。
由于MySQL 没有提供减法操作符,这里我们换做PostgreSQL来检测。 t_girl=# select count(*) from (select * from t1_old except select * from t1_new) as T; count ------- 0 (1 row) Time: 1.809 ms 这里检测出来结果是0,那么证明两表的内容一致。 那么我们可以针对第一种方法提到的另外一种情况做检测: t_girl=# select count(*) from (select * from t1_old1 except select * from t1_new1) as T; count ------- 1 (1 row) Time: 9.837 ms
OK,这里检测出来结果不对,那么就直接给出不一致的结论。
第三种: 用全表JOIN,这个也是最烂的做法了,当然我这里指的是在表记录数超级多的情形下。
当然这点我也用PostgreSQL来演示 t_girl=# select count(*) from t1_old as a full outer join t1_new as b using (id,log_time) where a.id is null or b.id is null; count ------- 0 (1 row) Time: 5.002 ms t_girl=# 结果为0,证明内容一致。
第四种: 用checksum校验。
比如在MySQL 里面,如果两张表的checksum值一致,那么内容也就一致。 mysql> checksum table t1_old; +---------------+----------+ | Table | Checksum | +---------------+----------+ | t_girl.t1_old | 60614552 | +---------------+----------+ 1 row in set (0.00 sec) mysql> checksum table t1_new; +---------------+----------+ | Table | Checksum | +---------------+----------+ | t_girl.t1_new | 60614552 | +---------------+----------+ 1 row in set (0.00 sec) 但是这种方法也只局限于两表结构一摸一样。 比如,我修改下表t1_old的字段类型,那么checksum的值也就不一样了。 mysql> alter table t1_old modify id bigint; Query OK, 100 rows affected (0.23 sec) Records: 100 Duplicates: 0 Warnings: 0 mysql> checksum table t1_old; +---------------+------------+ | Table | Checksum | +---------------+------------+ | t_girl.t1_old | 3211623989 | +---------------+------------+ 1 row in set (0.00 sec) mysql> checksum table t1_new; +---------------+----------+ | Table | Checksum | +---------------+----------+ | t_girl.t1_new | 60614552 | +---------------+----------+ 1 row in set (0.00 sec)
所以从上面几种数据库提供的方法来看,用减法来归零相对来说比较可靠,其他的方法比较适合在特定的情形下来检测。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds





Aujourd'hui, j'aimerais vous présenter un article publié par le MIT la semaine dernière, utilisant GPT-3.5-turbo pour résoudre le problème de la détection des anomalies des séries chronologiques et vérifiant dans un premier temps l'efficacité du LLM dans la détection des anomalies des séries chronologiques. Il n'y a pas de réglage fin dans l'ensemble du processus et GPT-3.5-turbo est utilisé directement pour la détection des anomalies. Le cœur de cet article est de savoir comment convertir des séries temporelles en entrées pouvant être reconnues par GPT-3.5-turbo et comment concevoir. des invites ou des pipelines pour laisser LLM résoudre la tâche de détection des anomalies. Permettez-moi de vous présenter une introduction détaillée à ce travail. Titre de l'article image : Largelangagemodelscanbezero-shotanomalydete

Le langage Go est un langage de programmation efficace, concis et facile à apprendre. Il est privilégié par les développeurs en raison de ses avantages en programmation simultanée et en programmation réseau. Dans le développement réel, les opérations de base de données font partie intégrante. Cet article explique comment utiliser le langage Go pour implémenter les opérations d'ajout, de suppression, de modification et de requête de base de données. Dans le langage Go, nous utilisons généralement des bibliothèques tierces pour faire fonctionner les bases de données, telles que les packages SQL couramment utilisés, gorm, etc. Ici, nous prenons le package SQL comme exemple pour présenter comment implémenter les opérations d'ajout, de suppression, de modification et de requête de la base de données. Supposons que nous utilisons une base de données MySQL.

01Aperçu des perspectives Actuellement, il est difficile d'atteindre un équilibre approprié entre efficacité de détection et résultats de détection. Nous avons développé un algorithme YOLOv5 amélioré pour la détection de cibles dans des images de télédétection optique haute résolution, en utilisant des pyramides de caractéristiques multicouches, des stratégies de têtes de détection multiples et des modules d'attention hybrides pour améliorer l'effet du réseau de détection de cibles dans les images de télédétection optique. Selon l'ensemble de données SIMD, le mAP du nouvel algorithme est 2,2 % meilleur que YOLOv5 et 8,48 % meilleur que YOLOX, permettant ainsi d'obtenir un meilleur équilibre entre les résultats de détection et la vitesse. 02 Contexte et motivation Avec le développement rapide de la technologie de télédétection, les images de télédétection optique à haute résolution ont été utilisées pour décrire de nombreux objets à la surface de la Terre, notamment des avions, des voitures, des bâtiments, etc. Détection d'objets dans l'interprétation d'images de télédétection

Les dernières versions d'Apple des systèmes iOS18, iPadOS18 et macOS Sequoia ont ajouté une fonctionnalité importante à l'application Photos, conçue pour aider les utilisateurs à récupérer facilement des photos et des vidéos perdues ou endommagées pour diverses raisons. La nouvelle fonctionnalité introduit un album appelé "Récupéré" dans la section Outils de l'application Photos qui apparaîtra automatiquement lorsqu'un utilisateur a des photos ou des vidéos sur son appareil qui ne font pas partie de sa photothèque. L'émergence de l'album « Récupéré » offre une solution aux photos et vidéos perdues en raison d'une corruption de la base de données, d'une application d'appareil photo qui n'enregistre pas correctement dans la photothèque ou d'une application tierce gérant la photothèque. Les utilisateurs n'ont besoin que de quelques étapes simples

Le mappage polymorphe Hibernate peut mapper les classes héritées à la base de données et fournit les types de mappage suivants : join-subclass : crée une table séparée pour la sous-classe, incluant toutes les colonnes de la classe parent. table par classe : créez une table distincte pour les sous-classes, contenant uniquement des colonnes spécifiques aux sous-classes. union-subclass : similaire à join-subclass, mais la table de classe parent réunit toutes les colonnes de la sous-classe.

Comment utiliser MySQLi pour établir une connexion à une base de données en PHP : Inclure l'extension MySQLi (require_once) Créer une fonction de connexion (functionconnect_to_db) Appeler la fonction de connexion ($conn=connect_to_db()) Exécuter une requête ($result=$conn->query()) Fermer connexion ( $conn->close())

Pour gérer les erreurs de connexion à la base de données en PHP, vous pouvez utiliser les étapes suivantes : Utilisez mysqli_connect_errno() pour obtenir le code d'erreur. Utilisez mysqli_connect_error() pour obtenir le message d'erreur. En capturant et en enregistrant ces messages d'erreur, les problèmes de connexion à la base de données peuvent être facilement identifiés et résolus, garantissant ainsi le bon fonctionnement de votre application.

HTML ne peut pas lire directement la base de données, mais cela peut être réalisé via JavaScript et AJAX. Les étapes comprennent l'établissement d'une connexion à la base de données, l'envoi d'une requête, le traitement de la réponse et la mise à jour de la page. Cet article fournit un exemple pratique d'utilisation de JavaScript, AJAX et PHP pour lire les données d'une base de données MySQL, montrant comment afficher dynamiquement les résultats d'une requête dans une page HTML. Cet exemple utilise XMLHttpRequest pour établir une connexion à la base de données, envoyer une requête et traiter la réponse, remplissant ainsi les données dans les éléments de la page et réalisant la fonction de lecture HTML de la base de données.
