SQL Server:快速导入数据
本文介绍了几种不同的 批量 导入 数据 的方法、各种方法相应的实例及其所需的时间长短…… 如果需要向 数据 库专区 href="http://dev.yesky.com/devsjk" target=_blank>SQL Server 批量 导入 数据 ,根据 导入 的选项和表中的索引设置, 数据 导入 的时间可
本文介绍了几种不同的批量导入数据的方法、各种方法相应的实例及其所需的时间长短……
如果需要向数据库专区 href="http://dev.yesky.com/devsjk" target=_blank>SQL Server批量导入数据,根据导入的选项和表中的索引设置,数据导入的时间可能会在不同情况下相差甚远。如何能够把批量导入的过程尽量少花时间呢?在这里我们将会介绍几种不同的批量导入数据的方法、各种方法相应的实例及其所需的时间长短。
在我们的测试中我们采取了六种不同的数据导入方法:
1. 表含有一个聚集索引(clustered index)和两个非聚集索引(non-clustered index)
2. 表只含有一个聚集索引
3. 表不含有任何索引
4. 表不含有任何索引并且有TABLOCK指示
5. 表只含有一个聚集索引并且有TABLOCK指示
6. 表含有一个聚集索引一个聚集索引并且有TABLOCK指示
另外,测试所用数据库在测试前设置为批日志恢复模式。
这些测试中,每次迭代后数据库和日志都会清理日志文件,而且实施每一个步骤之前都将表删除,然后重新创建新表。
测试一
第一次运行是使用一个含有121317行的数据集和一个空表。每次运行之前都会重新创建符合测试的表。
如下图结果所示,我们可以看出根据你用来导入数据的不同程序,运行时间有所不同。
ID |
测试 |
运行(1) |
运行(2) |
1 |
表含有一个聚集索引(clustered index)和两个非聚集索引(non-clustered index) |
5.1 |
5.3 |
2 |
表只含有一个聚集索引 |
3.2 |
3.0 |
3 |
表不含有任何索引 |
1.4 |
1.4 |
4 |
表只含有一个聚集索引并且有TABLOCK指示 |
1.2 |
1.3 |
5 |
表只含有一个聚集索引并且有TABLOCK指示 |
2.8 |
2.5 |
6 |
表含有一个聚集索引一个聚集索引并且有TABLOCK指示 |
4.1 |
3.9 |
测试2
第二次运行是使用一个含有242634行的数据集和一个空表。每次运行之前都会重新创建符合测试的表。
我们可以看到这些运行的时间有一些差别。
ID |
Test |
运行(1) |
运行(2) |
1 |
表含有一个聚集索引(clustered index)和两个非聚集索引(non-clustered index) |
14.0 |
13.8 |
2 |
表只含有一个聚集索引 |
6.9 |
7.3 |
3 |
表不含有任何索引 |
2.7 |
2.7 |
4 |
表只含有一个聚集索引并且有TABLOCK指示 |
2.5 |
2.5 |
5 |
表只含有一个聚集索引并且有TABLOCK指示 |
5.6 |
5.5 |
6 |
表含有一个聚集索引一个聚集索引并且有TABLOCK指示 |
8.4 |
8.7 |
测试三
在这个测试中,我们运行了两个导入过程。第一次导入使用了一个含有121317行和一个空表,然后在同一个表中导入另外121317条记录。每次运行之前都会重新创建符合测试的表。
ID |
测试 |
运行(1) |
运行(2) |
总时间 |
1 |
表含有一个聚集索引(clustered index)和两个非聚集索引(non-clustered index) |
8.4 |
7.7 |
16.1 |
2 |
表只含有一个聚集索引 |
3.5 |
3.2 |
6.7 |
3 |
表不含有任何索引 |
1.5 |
1.4 |
2.9 |
4 |
表只含有一个聚集索引并且有TABLOCK指示 |
1.3 |
1.3 |
2.6 |
5 |
表只含有一个聚集索引并且有TABLOCK指示 |
3.1 |
4.0 |
7.1 |
6 |
表含有一个聚集索引一个聚集索引并且有TABLOCK指示 |
4.0 |
8.5 |
12.5 |
总结
我们可以从以上测试的结果看出,各种不同的条件会影响数据导入所用的时间。因此,如果想要更快地导入数据,可以导入不含任何索引的表,在导入完成之后再建立索引。不过我们的测试中没有检测在导入完成后建立索引所需要的时间。
另外,还要注意确保你的数据和日志文件有足够的空间来完成这个导入过程而不会导致文件自动增长。文件自动增长会极大地影响总导入的速度。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

HQL et SQL sont comparés dans le framework Hibernate : HQL (1. Syntaxe orientée objet, 2. Requêtes indépendantes de la base de données, 3. Sécurité des types), tandis que SQL exploite directement la base de données (1. Normes indépendantes de la base de données, 2. Exécutable complexe requêtes et manipulation de données).

DDREASE est un outil permettant de récupérer des données à partir de périphériques de fichiers ou de blocs tels que des disques durs, des SSD, des disques RAM, des CD, des DVD et des périphériques de stockage USB. Il copie les données d'un périphérique bloc à un autre, laissant derrière lui les blocs corrompus et ne déplaçant que les bons blocs. ddreasue est un puissant outil de récupération entièrement automatisé car il ne nécessite aucune interruption pendant les opérations de récupération. De plus, grâce au fichier map ddasue, il peut être arrêté et repris à tout moment. Les autres fonctionnalités clés de DDREASE sont les suivantes : Il n'écrase pas les données récupérées mais comble les lacunes en cas de récupération itérative. Cependant, il peut être tronqué si l'outil est invité à le faire explicitement. Récupérer les données de plusieurs fichiers ou blocs en un seul

0. À quoi sert cet article ? Nous proposons DepthFM : un modèle d'estimation de profondeur monoculaire génératif de pointe, polyvalent et rapide. En plus des tâches traditionnelles d'estimation de la profondeur, DepthFM démontre également des capacités de pointe dans les tâches en aval telles que l'inpainting en profondeur. DepthFM est efficace et peut synthétiser des cartes de profondeur en quelques étapes d'inférence. Lisons ce travail ensemble ~ 1. Titre des informations sur l'article : DepthFM : FastMonocularDepthEstimationwithFlowMatching Auteur : MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Lorsque nous utilisons cette plateforme pour écouter des chansons, la plupart d'entre elles devraient contenir des chansons que vous souhaitez écouter. Bien sûr, certaines choses peuvent ne pas être écoutées car il n'y a pas de droit d'auteur. Bien sûr, nous pouvons également utiliser directement certaines chansons. importé localement. Allez-y pour pouvoir écouter. Nous pouvons télécharger certaines chansons et les convertir directement au format mp3, afin qu'elles puissent être numérisées sur le téléphone mobile pour l'importation et d'autres situations. Cependant, pour la plupart des utilisateurs, ils ne savent pas grand-chose sur l'importation de contenu de chansons locales, donc afin de bien résoudre ces problèmes, aujourd'hui l'éditeur vous l'expliquera également. La méthode de contenu vous permet de faire de meilleurs choix sans vous demander si. tu es intéressé,

Les performances de JAX, promu par Google, ont dépassé celles de Pytorch et TensorFlow lors de récents tests de référence, se classant au premier rang sur 7 indicateurs. Et le test n’a pas été fait sur le TPU présentant les meilleures performances JAX. Bien que parmi les développeurs, Pytorch soit toujours plus populaire que Tensorflow. Mais à l’avenir, des modèles plus volumineux seront peut-être formés et exécutés sur la base de la plate-forme JAX. Modèles Récemment, l'équipe Keras a comparé trois backends (TensorFlow, JAX, PyTorch) avec l'implémentation native de PyTorch et Keras2 avec TensorFlow. Premièrement, ils sélectionnent un ensemble de

Je pleure à mort. Le monde construit à la folie de grands modèles. Les données sur Internet ne suffisent pas du tout. Le modèle de formation ressemble à « The Hunger Games », et les chercheurs en IA du monde entier se demandent comment nourrir ces personnes avides de données. Ce problème est particulièrement important dans les tâches multimodales. À une époque où rien ne pouvait être fait, une équipe de start-up du département de l'Université Renmin de Chine a utilisé son propre nouveau modèle pour devenir la première en Chine à faire de « l'auto-alimentation des données générées par le modèle » une réalité. De plus, il s’agit d’une approche à deux volets, du côté compréhension et du côté génération, les deux côtés peuvent générer de nouvelles données multimodales de haute qualité et fournir un retour de données au modèle lui-même. Qu'est-ce qu'un modèle ? Awaker 1.0, un grand modèle multimodal qui vient d'apparaître sur le Forum Zhongguancun. Qui est l'équipe ? Moteur Sophon. Fondé par Gao Yizhao, doctorant à la Hillhouse School of Artificial Intelligence de l’Université Renmin.

Vous êtes confronté à un décalage et à une connexion de données mobile lente sur iPhone ? En règle générale, la puissance de l'Internet cellulaire sur votre téléphone dépend de plusieurs facteurs tels que la région, le type de réseau cellulaire, le type d'itinérance, etc. Vous pouvez prendre certaines mesures pour obtenir une connexion Internet cellulaire plus rapide et plus fiable. Correctif 1 – Forcer le redémarrage de l'iPhone Parfois, le redémarrage forcé de votre appareil réinitialise simplement beaucoup de choses, y compris la connexion cellulaire. Étape 1 – Appuyez simplement une fois sur la touche d’augmentation du volume et relâchez-la. Ensuite, appuyez sur la touche de réduction du volume et relâchez-la à nouveau. Étape 2 – La partie suivante du processus consiste à maintenir le bouton sur le côté droit. Laissez l'iPhone finir de redémarrer. Activez les données cellulaires et vérifiez la vitesse du réseau. Vérifiez à nouveau Correctif 2 – Changer le mode de données Bien que la 5G offre de meilleures vitesses de réseau, elle fonctionne mieux lorsque le signal est plus faible

Récemment, le milieu militaire a été submergé par la nouvelle : les avions de combat militaires américains peuvent désormais mener des combats aériens entièrement automatiques grâce à l'IA. Oui, tout récemment, l’avion de combat IA de l’armée américaine a été rendu public pour la première fois, dévoilant ainsi son mystère. Le nom complet de ce chasseur est Variable Stability Simulator Test Aircraft (VISTA). Il a été personnellement piloté par le secrétaire de l'US Air Force pour simuler une bataille aérienne en tête-à-tête. Le 2 mai, le secrétaire de l'US Air Force, Frank Kendall, a décollé à bord d'un X-62AVISTA à la base aérienne d'Edwards. Notez que pendant le vol d'une heure, toutes les actions de vol ont été effectuées de manière autonome par l'IA ! Kendall a déclaré : "Au cours des dernières décennies, nous avons réfléchi au potentiel illimité du combat air-air autonome, mais cela a toujours semblé hors de portée." Mais maintenant,
