Maison > base de données > tutoriel mysql > 最长上升子序列 Longest Increasing Subsequence 输出其中一个序

最长上升子序列 Longest Increasing Subsequence 输出其中一个序

WBOY
Libérer: 2016-06-07 15:17:51
original
1577 Les gens l'ont consulté

最长上升子序列 概念 维基百科-Longest Increasing Subsequence 算法一:动态规划 数据定义: a[] : 输入序列 d[] : 保存最长升序子序列的子问题。 d[i] 表示以a[i]结尾的最长子序列的长度。 d[]初始化为1。因为子序列最短也是1。 n : a 和 d的长度 状态转移

最长上升子序列

概念 维基百科->Longest Increasing Subsequence


算法一:动态规划

数据定义:

a[] : 输入序列

d[] : 保存最长升序子序列的子问题。

        d[i] 表示以a[i]结尾的最长子序列的长度。

        d[]初始化为1。因为子序列最短也是1。

n : a 和 d的长度

状态转移方程:

d[0] = 1  当i = 0 

d[i] = 1 + max{d[j], a[i] > a[j] && 0

注解:在序列a[0],a[1],a[2],...,a[i-1]中找到最长的一个上升子序列,并且a[i]可以添加在它的末尾,使成为一个更长的上升子序列

时间复杂度分析:

求解一个d[i]需要一个循环取最大值,时间复杂度为O(n),所以总的时间复杂度是 O(n^2)。

程序使用双重循环构造d数组,最后遍历d数值去最大值。


-------------------------------------华丽的分割线------------------------------------------


算法二:贪心 + 二分搜索

数据定义补充:

开一个栈,将a[0]入栈,每次取栈顶元素top和读到的元素a[i](0 top 则将a[i]入栈;如果a[i]

这是很好理解的,对于x和y,如果x

举例:原序列为1,5,8,3,6,7

开始1,5,8相继入栈,此时读到3,用3替换5,得到1,3,8;

 再读6,用6替换8,得到1,3,6;

再读7,得到最终栈为1,3,6,7。最长递增子序列为长度4。


伪代码描述: 

初始化栈s

top = 0;

s[top] = a[i];

for (i = 1; i

if a[i] > s[top] // 将a[i]接在s[top]所代表的子串之后得到一个更长的子序列

 top = top + 1

b[top] = a[i]

else

   使用二分查找到这样一个j,使得s[j]

   s[j + 1] = a[i]

return : top + 1

算法分析:

内层循环由于b序列的严格递增性,可以使用二分查找,时间复杂度为O(log n),乘以外层循环,最终时间复杂度为O(n log n)。


注意:当出现1,5,8,2这种情况时,栈内最后的数是1,2,8不是正确的序列,难道错了?

分析一下,我们可以看出,虽然有些时候这样得不到正确的序列,但最后算出来的个数是没错的,为什么呢?

想想,当a[i]>top时,总个数直接加1,这肯定没错;但当a[i]

这两种情况的分析可以看出,如果只求个数的话,这个算法比较高效;但如果要求打印出序列时,就只能用动态规划了。


附上C++代码:

#include <iostream>
#include <stack>
using namespace std;
//dp[i] 表示以A[0~i]的最长上升子序列的长度
//dp[0] = 1 当i=0
//dp[i] = 1 + max{dp[j], 0<j int lis_dp seq n new for i="0;" dp pre max="0;" j="0;" if i_max="0;" stack> s;
	int k = i_max;
	while (k >= 0) {
		s.push(seq[k]);
		k = pre[k];
	}
	while (!s.empty()) {
		cout = array[high]
			//mid+1不会溢出,想想为什么
			return mid + 1;
		}
		if (array[mid]  stack[top]) {
			//如果seq[i]大于栈顶元素,则入栈
			stack[++top] = seq[i];
		} else {
			//从栈底开始,找到第一个>=seq[i]的元素所在位置
			int replace = binary_search(stack, seq[i], 0, top);
			stack[replace] = seq[i];
		}
	}
	for (int i = 0; i 从测试结果看出,虽然算法一和算法二给出的长度值相等,但是算法二给出的序列顺序与原来的不符。<br>
<br>

<p>
<strong><br>
</strong></p>
<p>
<span>参考:</span></p>
<p>
<span>http://www.cnblogs.com/zhtzhl/archive/2012/08/03/2622219.html<br>
</span></p>
<p>
<span>http://www.cnblogs.com/zhanglanyun/archive/2011/09/09/2172809.html<br>
</span></p>
<p>
<span>http://hi.baidu.com/rffffffff007/item/75353d0c77192810addc70b6</span><br>
</p>
<p>
<br>
</p>


</j></stack></iostream>
Copier après la connexion
Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal