gdb调试之---当update时第一个持有的Latch是什么Latch锁?
转载请注明出处 :http://blog.csdn.net/guoyjoe/article/details/18456937 1、查出当前会话所对应的系统进程号:SPID=7376,如下语句(在第一个窗口执行) gyj@OCM select spid from v$session s,v$process p where s.paddr=p.addr and sid in(select disti
转载请注明出处:http://blog.csdn.net/guoyjoe/article/details/18456937
1、查出当前会话所对应的系统进程号:SPID=7376,如下语句(在第一个窗口执行)
gyj@OCM> select spid from v$session s,v$process p where s.paddr=p.addr and sid in(select distinct sid from v$mystat); SPID ------------------------ 7376
[oracle@mydb ~]$ gdb $ORACLE_HOME/bin/oracle 7376 GNU gdb Fedora (6.8-27.el5) Copyright (C) 2008 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. Type "show copying" and "show warranty" for details. This GDB was configured as "x86_64-redhat-linux-gnu"... (no debugging symbols found) Attaching to program: /u01/app/oracle/product/11.2.0/bin/oracle, process 7376 Reading symbols from /u01/app/oracle/product/11.2.0/lib/libodm11.so...(no debugging symbols found)...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libodm11.so Reading symbols from /u01/app/oracle/product/11.2.0/lib/libcell11.so...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libcell11.so Reading symbols from /u01/app/oracle/product/11.2.0/lib/libskgxp11.so...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libskgxp11.so Reading symbols from /lib64/librt.so.1...done. Loaded symbols for /lib64/librt.so.1 Reading symbols from /u01/app/oracle/product/11.2.0/lib/libnnz11.so...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libnnz11.so Reading symbols from /u01/app/oracle/product/11.2.0/lib/libclsra11.so...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libclsra11.so Reading symbols from /u01/app/oracle/product/11.2.0/lib/libdbcfg11.so...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libdbcfg11.so Reading symbols from /u01/app/oracle/product/11.2.0/lib/libhasgen11.so...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libhasgen11.so Reading symbols from /u01/app/oracle/product/11.2.0/lib/libskgxn2.so...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libskgxn2.so Reading symbols from /u01/app/oracle/product/11.2.0/lib/libocr11.so...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libocr11.so Reading symbols from /u01/app/oracle/product/11.2.0/lib/libocrb11.so...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libocrb11.so Reading symbols from /u01/app/oracle/product/11.2.0/lib/libocrutl11.so...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libocrutl11.so Reading symbols from /usr/lib64/libaio.so.1...done. Loaded symbols for /usr/lib64/libaio.so.1 Reading symbols from /lib64/libdl.so.2...done. Loaded symbols for /lib64/libdl.so.2 Reading symbols from /lib64/libm.so.6...done. Loaded symbols for /lib64/libm.so.6 Reading symbols from /lib64/libpthread.so.0...done. [Thread debugging using libthread_db enabled] [New Thread 0x2b0b8fef0910 (LWP 7376)] Loaded symbols for /lib64/libpthread.so.0 Reading symbols from /lib64/libnsl.so.1...done. Loaded symbols for /lib64/libnsl.so.1 Reading symbols from /lib64/libc.so.6...done. Loaded symbols for /lib64/libc.so.6 Reading symbols from /lib64/ld-linux-x86-64.so.2...done. Loaded symbols for /lib64/ld-linux-x86-64.so.2 Reading symbols from /usr/lib64/libnuma.so.1...done. Loaded symbols for /usr/lib64/libnuma.so.1 Reading symbols from /lib64/libnss_files.so.2...done. Loaded symbols for /lib64/libnss_files.so.2 Reading symbols from /u01/app/oracle/product/11.2.0/lib/libnque11.so...done. Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libnque11.so 0x0000003f0d40d290 in __read_nocancel () from /lib64/libpthread.so.0 (gdb)
3、设一个断点,持有第一个Latch锁(预先知道函数kslgetl就是持有Latch的函数),并运行(c命令,即continue)(在第二个窗口执行)
(gdb) b kslgetl Breakpoint 1 at 0x8f96376 (gdb) c Continuing.
4、执行一个update语句,触发断点的操作,此时update被阻塞了(在第一个窗口执行)
gyj@OCM> update gyj_test set name='AAAAA' where id=1;
5、一执行updater操作,断点就停在这儿了(在第二个窗口执行)
Breakpoint 1, 0x0000000008f96376 in kslgetl () (gdb)
6、我们先来看update时持有第一个Latch锁所对应函数kslgetl ()的第一个参数是什么?用命令info all-register显示寄存器(在第二个窗口执行)
(gdb) info all-register rax 0x0 0 rbx 0x2000 8192 rcx 0xf27 3879 rdx 0x0 0 rsi 0x1 1 rdi 0x601082f0 1611694832 rbp 0x7fff1c5754d0 0x7fff1c5754d0 rsp 0x7fff1c5754d0 0x7fff1c5754d0 r8 0xf27 3879 r9 0xbaf3fa0 196034464 r10 0x0 0 r11 0xf27 3879 r12 0x927db800 2457712640 r13 0x601082f0 1611694832 r14 0x1 1 r15 0x1 1 rip 0x8f96376 0x8f96376 <kslgetl+4> eflags 0x246 [ PF ZF IF ] cs 0x33 51 ss 0x2b 43 ds 0x0 0 es 0x0 0 fs 0x0 0 gs 0x0 0 st0 0 (raw 0x00000000000000000000) ---Type <return> to continue, or q <return> to quit--- st1 0 (raw 0x00000000000000000000) st2 0 (raw 0x00000000000000000000) st3 0 (raw 0x00000000000000000000) st4 0 (raw 0x00000000000000000000) st5 0 (raw 0x00000000000000000000) st6 333296 (raw 0x4011a2be000000000000) st7 300384 (raw 0x401192ac000000000000) fctrl 0x27f 639 fstat 0x0 0 ftag 0xffff 65535 fiseg 0x0 0 fioff 0x9394e95 154750613 foseg 0x7fff 32767 fooff 0x1c573f50 475479888 fop 0x0 0 xmm0 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} xmm1 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} xmm2 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} xmm3 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x8000000000000000, 0x8000000000000000}, v16_int8 = {0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, v8_int16 = {0xfffe, 0xffff, 0xffff, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff}, v4_int32 = {0xfffffffe, 0xffffffff, 0xfffffffe, 0xffffffff}, v2_int64 = {0xfffffffffffffffe, 0xfffffffffffffffe}, uint128 = 0xfffffffffffffffefffffffffffffffe} ---Type <return> to continue, or q <return> to quit--- xmm4 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} xmm5 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x32, 0xa3, 0xd7, 0x2, 0x0 <repeats 12 times>}, v8_int16 = {0xa332, 0x2d7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x2d7a332, 0x0, 0x0, 0x0}, v2_int64 = {0x2d7a332, 0x0}, uint128 = 0x00000000000000000000000002d7a332} xmm6 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} xmm7 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0xda, 0x87, 0xd7, 0x2, 0x0 <repeats 12 times>}, v8_int16 = {0x87da, 0x2d7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x2d787da, 0x0, 0x0, 0x0}, v2_int64 = {0x2d787da, 0x0}, uint128 = 0x00000000000000000000000002d787da} xmm8 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} xmm9 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} xmm10 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} xmm11 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} xmm12 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x18, 0xe, 0x73, 0x90, 0xb, 0x2b, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v8_int16 = {0xe18, 0x9073, 0x2b0b, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x90730e18, 0x2b0b, 0x0, 0x0}, v2_int64 = {0x2b0b90730e18, 0x0}, uint128 = 0x000000000000000000002b0b90730e18} xmm13 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} xmm14 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} ---Type <return> to continue, or q <return> to quit--- xmm15 {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000} mxcsr 0x1fa1 [ IE PE IM DM ZM OM UM PM ] (gdb)
7、rdi/edi是第一个参数, rsi/esi是第二个参数,贴出info all-register命令所显示函数kslgetl ()的两个参数,如下
8、找到第一个参数0x601082f0,注意因我的OS是64位,前面要补8个0,在v$latch_children视图中地址的字母要大写,
sys@OCM> select name from v$latch_children where addr='00000000601082F0'; NAME ---------------------------------------------------------------- shared pool
10、发现Latch锁就是shared pool Latch。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Google Chrome est l'un des navigateurs les plus populaires au monde et de nombreux utilisateurs préfèrent l'utiliser comme navigateur par défaut sur leur PC Windows. Chrome offre un large éventail de fonctionnalités qui rendent l'expérience de navigation agréable et sans effort et reste donc l'un des navigateurs les plus fiables. Mais, comme tout autre navigateur, même Chrome a ses propres défauts et il est également sujet aux bugs et aux problèmes lorsque vous en avez le plus besoin. L'une de ces erreurs est le code d'erreur 3 : 0x80040154, qui se produit lors de la vérification des mises à jour de Google Chrome. Le message d'erreur indique "Une erreur s'est produite lors de la vérification des mises à jour. La vérification des mises à jour n'a pas pu démarrer (Code d'erreur 3 : 0x80080005) ou (Erreur

Si vous utilisez Visual Studio Code (VSCode) et que vous réfléchissez à la manière de désactiver ses mises à jour automatiques de logiciel et à la manière de désactiver les mises à jour automatiques de ses extensions, lisez cet article. Si vous n'utilisez pas souvent VSCode, ouvrez l'éditeur après une longue période et souhaitez activer les mises à jour automatiques, cet article vous guidera également dans cette démarche. Discutons en détail des différentes manières d'activer ou de désactiver les mises à jour automatiques de VSCode. Table des matières Première méthode : utiliser les paramètres pour activer/désactiver les mises à jour automatiques de VSCode Étape 1 : ouvrez VS Code et cliquez sur le symbole en forme d'engrenage dans le coin inférieur gauche. Étape 2 : Cliquez sur Paramètres dans la liste qui apparaît. Étape 3 : Tapez mise à jour dans la barre de recherche et appuyez sur Entrée. Rechercher des mises à jour : modèle 4

Après plusieurs pré-versions, l'équipe de développement de KDE Plasma a dévoilé le 28 février la version 6.0 de son environnement de bureau pour les systèmes Linux et BSD, utilisant pour la première fois le framework Qt6. KDE Plasma 6.1 est désormais livré avec un certain nombre de nouvelles fonctionnalités

Lorsque nous utilisons le système Win10, nous rencontrons parfois des situations où l'ordinateur se bloque. Ensuite, lorsque nous vérifions le processus en arrière-plan, nous constatons qu'un processus de télémétrie de compatibilité Microsoft consomme une quantité de ressources particulièrement élevée. Les utilisateurs peuvent essayer de désinstaller le logiciel de protection tiers, puis essayer un démarrage en mode minimal pour fonctionner. Laissez ce site présenter soigneusement aux utilisateurs la solution à l'utilisation élevée du processeur par la télémétrie de compatibilité Microsoft. Solution à l'utilisation élevée du processeur de la télémétrie de compatibilité Microsoft Méthode 1 : essayez après avoir désinstallé le logiciel de protection tiers

Techniques de configuration courantes pour utiliser GDB pour déboguer le noyau Linux Introduction : Dans le développement Linux, utiliser GDB pour déboguer le noyau est une compétence très importante. GDB est un puissant outil de débogage qui peut aider les développeurs à localiser et à résoudre rapidement les bogues du noyau. Cet article présentera quelques techniques de configuration GDB courantes et comment utiliser GDB pour déboguer le noyau Linux. 1. Configurer l'environnement GDB Tout d'abord, nous devons configurer l'environnement GDB sur le système Linux. Veuillez vous assurer que l'outil GDB est installé sur votre système.

Instruction SQLUPDATE L'instruction Update est utilisée pour modifier les données de la table. La syntaxe est la suivante : UPDATE nom de table SET nom de colonne = nouvelle valeur WHERE nom de colonne = certaine valeur Table "Person" : LastNameFirstNameAddressCityGatesBillXuanwumen10BeijingWilsonChamps-Elysees Mettre à jour une colonne dans une certaine ligne UPDATEPerson SETFirstName="Fred" WHERELastName="Wilson" Résultat : LastNa

Méthodes de configuration courantes pour utiliser GDB pour déboguer les programmes ARM intégrés sous Linux En tant que système informatique spécial, les systèmes embarqués sont généralement intégrés dans des appareils électroniques et utilisés pour contrôler et gérer les ressources matérielles. Afin de déboguer et d'analyser le fonctionnement des systèmes embarqués, nous devons utiliser des outils spécialisés. Parmi eux, GDB est un débogueur open source couramment utilisé qui peut s'exécuter sur des systèmes embarqués et communiquer avec des programmes. Cet article présentera les méthodes de configuration courantes pour utiliser GDB pour déboguer les programmes ARM intégrés sous Linux et donnera des exemples de code.

Dans MySQL, vous pouvez utiliser l'instruction UPDATE pour modifier et mettre à jour les données d'une ou plusieurs tables. L'article suivant vous aidera à explorer les détails de l'utilisation de UPDATE dans MySQL. J'espère qu'il vous sera utile.
