Hive安装简介
Hive是基于Hadoop的数据仓库平台。 Hive提供了类SQL查询语言。Hive的数据存储于HDFS中。一般情况下,用户提交的查询将被Hive转换为MapReduce作业并提交给Hadoop运行。 我们从Hive的安装开始,逐步学习Hive的方方面面。 安装Hive 安装前提 l Java 6 l Hadoop
Hive是基于Hadoop的数据仓库平台。
Hive提供了类SQL查询语言。Hive的数据存储于HDFS中。一般情况下,用户提交的查询将被Hive转换为MapReduce作业并提交给Hadoop运行。
我们从Hive的安装开始,逐步学习Hive的方方面面。
安装Hive
安装前提
l Java 6
l Hadoop
选择哪一个版本请参照Hive官方文档。安装Have是不需要特别设置关于Hadoop的信息,只要保证HADOOP_HOME环境变量正确设置就可以了。
安装
我们选择下载0.11.1稳定版本。下载地址:
http://mirrors.hust.edu.cn/apache/hive/stable/
1) 解压安装包到指定的目录:
tar xzf hive-0.11.0.tar.gz
2) 设置环境变量
export HIVE_INSTALL=/opt/Hive-0.11.0
export PATH=$PATH:$HIVE_INSTALL/bin
3)输入以下命令进入Shell
Hive
Hive交互环境( Shell)
Shell是我们和Hive交互的主要工具。
Hive的查询语言我们称为HiveQL。HiveQL的设计受到了MySQL的很多影响,所以如果你熟悉MySQL的话,你会发现使用HiveQL是同样的方便。
进入Shell后,输入以下命令看看Hive是否工作正常:
SHOW TABLES;
输出结果为:
OK
Time taken: 8.207seconds
如果输出结果显示有错误,可能是Hadoop没有运行,或者HADOOP_HOME变量没有真确设置。
和SQL一样,HiveQL一般是大小写无关的(字符串比较除外)。
输入命令是按Tab键,Hive将提示所有可用的输入。(命令自动完成)
第一次使用该命令可能会花上好几秒中甚至更长,因为Hive将创建metastore数据库(存储于metastore_db目录,此目录在你运行hive时所在目录之下,所以第一次运行Hive时,请先进入到合适的目录下)。
我们也可以直接从命令行运行hive脚本,比如:
hive –f /home/user/ hive.q
其中,-f 后面跟上脚本文件名(包括路径)。
无论是在交互模式还是非交互模式下,hive一般都会输出一些辅助信息,比如执行命令的时间等。如果你不需要输出这些消息,可以在进入hive时加上-s选项,比如:
hive –S
注意:S为大写
简单示例
我们以以下数据作为测试数据,结构为(班级号,学号,成绩)。
C01,N0101,82
C01,N0102,59
C01,N0103,65
C02,N0201,81
C02,N0202,82
C02,N0203,79
C03,N0301,56
C03,N0302,92
C03,N0306,72
执行以下命令:
create table student(classNostring, stuNo string, score int) row format delimited fields terminated by ',';
其中,定义表结构和SQL类似.。其它设置表示字段间以逗号分隔,一行为一个记录。
load data local inpath '/home/user/input/student.txt'overwrite into table student;
输出结果如下:
Copying data fromfile:/home/user/input/student.txt
Copying file:file:/home/user/input/student.txt
Loading data to tabledefault.student
rmr: DEPRECATED: Please use 'rm-r' instead.
Deleted/user/hive/warehouse/student
Table default.student stats:[num_partitions: 0, num_files: 1, num_rows: 0, total_size: 117, raw_data_size:0]
这个命令将student.txt文件内容加载到表student中。这个加载操作将直接把student.txt文件复制到hive的warehouse目录中,这个目录由hive.metastore.warehouse.dir配置项设置,默认值为/user/hive/warehouse。Overwrite选项将导致Hive事先删除student目录下所有的文件。
Hive不会对student.txt做任何格式处理,因为Hive本身并不强调数据的存储格式。
此例中,Hive将数据存储于HDFS系统中。当然,Hive也可以将数据存储于本地。
如果不加overwrite选项,且加载的文件在Hive中已经存在,则Hive会为文件重新命名。比如不加overwrite选项将以上命令执行两次,则第二次加载后,hive中新产生的文件名将会是“student_copy_1.txt”。(和Hadoop权威教程中描述的不一致,读者请慎重验证)
接下来,我们执行以下命令:
select * from student;
输出如下:
C01 N0101 82
C01 N0102 59
C01 N0103 65
C02 N0201 81
C02 N0202 82
C02 N0203 79
C03 N0301 56
C03 N0302 92
C03 N0306 72
执行以下命令:
Select classNo,count(score) fromstudent where score>=60 group by classNo;
输出如下:
C01 2
C02 3
C03 2
由此看见,HiveQL的使用和SQL及其类似。我们用到了group和count,其实在后台Hive将这些操作都转换成了MapReduce操作提交给Hadoop执行,并最终输出结果。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

0. À quoi sert cet article ? Nous proposons DepthFM : un modèle d'estimation de profondeur monoculaire génératif de pointe, polyvalent et rapide. En plus des tâches traditionnelles d'estimation de la profondeur, DepthFM démontre également des capacités de pointe dans les tâches en aval telles que l'inpainting en profondeur. DepthFM est efficace et peut synthétiser des cartes de profondeur en quelques étapes d'inférence. Lisons ce travail ensemble ~ 1. Titre des informations sur l'article : DepthFM : FastMonocularDepthEstimationwithFlowMatching Auteur : MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Les performances de JAX, promu par Google, ont dépassé celles de Pytorch et TensorFlow lors de récents tests de référence, se classant au premier rang sur 7 indicateurs. Et le test n’a pas été fait sur le TPU présentant les meilleures performances JAX. Bien que parmi les développeurs, Pytorch soit toujours plus populaire que Tensorflow. Mais à l’avenir, des modèles plus volumineux seront peut-être formés et exécutés sur la base de la plate-forme JAX. Modèles Récemment, l'équipe Keras a comparé trois backends (TensorFlow, JAX, PyTorch) avec l'implémentation native de PyTorch et Keras2 avec TensorFlow. Premièrement, ils sélectionnent un ensemble de

Vous êtes confronté à un décalage et à une connexion de données mobile lente sur iPhone ? En règle générale, la puissance de l'Internet cellulaire sur votre téléphone dépend de plusieurs facteurs tels que la région, le type de réseau cellulaire, le type d'itinérance, etc. Vous pouvez prendre certaines mesures pour obtenir une connexion Internet cellulaire plus rapide et plus fiable. Correctif 1 – Forcer le redémarrage de l'iPhone Parfois, le redémarrage forcé de votre appareil réinitialise simplement beaucoup de choses, y compris la connexion cellulaire. Étape 1 – Appuyez simplement une fois sur la touche d’augmentation du volume et relâchez-la. Ensuite, appuyez sur la touche de réduction du volume et relâchez-la à nouveau. Étape 2 – La partie suivante du processus consiste à maintenir le bouton sur le côté droit. Laissez l'iPhone finir de redémarrer. Activez les données cellulaires et vérifiez la vitesse du réseau. Vérifiez à nouveau Correctif 2 – Changer le mode de données Bien que la 5G offre de meilleures vitesses de réseau, elle fonctionne mieux lorsque le signal est plus faible

Je pleure à mort. Le monde construit à la folie de grands modèles. Les données sur Internet ne suffisent pas du tout. Le modèle de formation ressemble à « The Hunger Games », et les chercheurs en IA du monde entier se demandent comment nourrir ces personnes avides de données. Ce problème est particulièrement important dans les tâches multimodales. À une époque où rien ne pouvait être fait, une équipe de start-up du département de l'Université Renmin de Chine a utilisé son propre nouveau modèle pour devenir la première en Chine à faire de « l'auto-alimentation des données générées par le modèle » une réalité. De plus, il s’agit d’une approche à deux volets, du côté compréhension et du côté génération, les deux côtés peuvent générer de nouvelles données multimodales de haute qualité et fournir un retour de données au modèle lui-même. Qu'est-ce qu'un modèle ? Awaker 1.0, un grand modèle multimodal qui vient d'apparaître sur le Forum Zhongguancun. Qui est l'équipe ? Moteur Sophon. Fondé par Gao Yizhao, doctorant à la Hillhouse School of Artificial Intelligence de l’Université Renmin.

La dernière vidéo du robot Optimus de Tesla est sortie, et il peut déjà fonctionner en usine. À vitesse normale, il trie les batteries (les batteries 4680 de Tesla) comme ceci : Le responsable a également publié à quoi cela ressemble à une vitesse 20 fois supérieure - sur un petit "poste de travail", en sélectionnant et en sélectionnant et en sélectionnant : Cette fois, il est publié L'un des points forts de la vidéo est qu'Optimus réalise ce travail en usine, de manière totalement autonome, sans intervention humaine tout au long du processus. Et du point de vue d'Optimus, il peut également récupérer et placer la batterie tordue, en se concentrant sur la correction automatique des erreurs : concernant la main d'Optimus, le scientifique de NVIDIA Jim Fan a donné une évaluation élevée : la main d'Optimus est l'un des robots à cinq doigts du monde. le plus adroit. Ses mains ne sont pas seulement tactiles

Nouveau SOTA pour des capacités de compréhension de documents multimodaux ! L'équipe Alibaba mPLUG a publié le dernier travail open source mPLUG-DocOwl1.5, qui propose une série de solutions pour relever les quatre défis majeurs que sont la reconnaissance de texte d'image haute résolution, la compréhension générale de la structure des documents, le suivi des instructions et l'introduction de connaissances externes. Sans plus tarder, examinons d’abord les effets. Reconnaissance et conversion en un clic de graphiques aux structures complexes au format Markdown : Des graphiques de différents styles sont disponibles : Une reconnaissance et un positionnement de texte plus détaillés peuvent également être facilement traités : Des explications détaillées sur la compréhension du document peuvent également être données : Vous savez, « Compréhension du document " est actuellement un scénario important pour la mise en œuvre de grands modèles linguistiques. Il existe de nombreux produits sur le marché pour aider à la lecture de documents. Certains d'entre eux utilisent principalement des systèmes OCR pour la reconnaissance de texte et coopèrent avec LLM pour le traitement de texte.

Récemment, le milieu militaire a été submergé par la nouvelle : les avions de combat militaires américains peuvent désormais mener des combats aériens entièrement automatiques grâce à l'IA. Oui, tout récemment, l’avion de combat IA de l’armée américaine a été rendu public pour la première fois, dévoilant ainsi son mystère. Le nom complet de ce chasseur est Variable Stability Simulator Test Aircraft (VISTA). Il a été personnellement piloté par le secrétaire de l'US Air Force pour simuler une bataille aérienne en tête-à-tête. Le 2 mai, le secrétaire de l'US Air Force, Frank Kendall, a décollé à bord d'un X-62AVISTA à la base aérienne d'Edwards. Notez que pendant le vol d'une heure, toutes les actions de vol ont été effectuées de manière autonome par l'IA ! Kendall a déclaré : "Au cours des dernières décennies, nous avons réfléchi au potentiel illimité du combat air-air autonome, mais cela a toujours semblé hors de portée." Mais maintenant,

Le FP8 et la précision de quantification inférieure en virgule flottante ne sont plus le « brevet » du H100 ! Lao Huang voulait que tout le monde utilise INT8/INT4, et l'équipe Microsoft DeepSpeed a commencé à exécuter FP6 sur A100 sans le soutien officiel de NVIDIA. Les résultats des tests montrent que la quantification FP6 de la nouvelle méthode TC-FPx sur A100 est proche ou parfois plus rapide que celle de INT4, et a une précision supérieure à celle de cette dernière. En plus de cela, il existe également une prise en charge de bout en bout des grands modèles, qui ont été open source et intégrés dans des cadres d'inférence d'apprentissage profond tels que DeepSpeed. Ce résultat a également un effet immédiat sur l'accélération des grands modèles : dans ce cadre, en utilisant une seule carte pour exécuter Llama, le débit est 2,65 fois supérieur à celui des cartes doubles. un
