成长型公司如何构建存储架构
随着大数据时代的到来,合理构建可持续的存储架构已经成为企业数据中心IT主管们面临的头号难题之一。经常有人问我,如何为成长型公司的大型系统部署存储架构,尤其是当这些大型系统承载视频、音频、或社交类网站时,该如何构建存储架构?以下介绍一些我们常
随着大数据时代的到来,合理构建可持续的存储架构已经成为企业数据中心IT主管们面临的头号难题之一。经常有人问我,如何为成长型公司的大型系统部署存储架构,尤其是当这些大型系统承载视频、音频、或社交类网站时,该如何构建存储架构?以下介绍一些我们常选择的方法及各自的优点。
构建存储架构时,要考虑许多问题,最明显的如存储容量、访问速度、缓存选择方案、服务器共享方式、访问协议及访问方法、安全及备份等等。
首先,我们认为最好的存放地址是存放在云中,这些服务存放在云中会很安全,如Amazon S3,阿里云OSS,或 Qiniu’s 的动态系统。但是,若你是自己想存储数据的话,你可以选择不同类型的存储容量。
DAS - 直接附加存储,也称为本地硬盘存储,是一种最普遍、速度最快也是最为经济的存储解决方案。现在已经有4TB的硬盘,再加上标准机箱可以有6-8个这样的硬盘,所以,若服务器是RAID5 配置的话,很容易就能达到20TB 以上。同时使用多个服务器的话,也很容易就能达到100TB,但是管理起来并不容易。所以,DAS是本地数据库存储、NFS共享存储及其它简单系统最好的存储选择方案。要想找一个比较简单的存储方案,这不失为一项最佳选择。
NAS – 网络附加存储也比较盛行,由两部分组成。最常见的情况就是 简单的服务器之间的NFS 共享,这种存储方式采用上文所述的大型TB硬盘,能存储简单的共享图片甚至视频,也能够达到十几TB 的存储量。
NAS 的第二种解决方案,则是商业解决组件,如NetAppFiler, 其存储容量可达几百TB,是一个强大的NFS解决方案,这些通常运用于大型系统,但是缺点是,当系统扩展受成本限制时,对此类存储进行扩展会花费很大的成本。
SAN - 存储区域网络,常被认为是NAS的“大哥”。但是,由于其成本太大且难以管理,所以,互联网行业通常不选择此解决方案。此外,该种存储不能够很好的响应互联网公司的共享需求,因为这种方案只连接几台高IO要求服务器如Oracle数据库联系在一起。
群集存储 - 在不用NFS 的情况下,这种方式越来越多的被用于解决共享问题。这种存储方案最好的优势在于,由于是群集存储,所以可以允许存储冗余存在,而这在DAS 或NAS系统中是很难实现的。常用的群集存储方式包括RedHat公司拥有的GlusterFS, 以及MogileFS。
这些系统通常管理起来很复杂,而且也有很多限制,如文件存放,空间管理及访问方法。例如,GlusterFS 就是由客户端进行管理,且以FUSE挂载,而MogileFS则根本无法挂载,因为它采用的是库驱动API,由PHP进行访问的等等。
群集存储容量可以扩大,甚至扩展到100TB,通常用于中等大小的图片或视频系统,前提是已经知道了它的限制和复杂性。
分布式存储 – 是群集系统的一个远房“表亲”,完全分布式的系统和Google File System比较接近, 在这个系统中,所有的文件、分布、复制、空间等都自动由系统进行管理。客户通常通过内核驱动程序安装该系统,整个分布式系统就像是SAN或NAS一样工作。
这些通常都是功能强大的商业化系统,如北京的Loongstore(龙存科技)。它们通常至少需要几个服务器才能开展工作,因为他们通常需要一个或更多的集群,并且其他服务器作为管理服务器来运行,除多个集群之外,多个存储节点也可以。但是,他们可以扩展到1PB甚至更大,是大型系统扩展的理想选择,并具有很高的冗余特性及极高的性能。
Flickr 或 Evernote 的API存储 – 可达500TB 甚至1PB, 对于某些特定存储需求,如图片存储,甚至可能用到几个基于文件的API系统,尽管大多数情况下是用于用户目录的增长。Flickr和Evernote 都发布了各自的系统架构,基本上都是基于HTTP文件存储的分布式集中管理系统。
在这些系统中,客户端调用目录寻找文件,然后获得一个URL反馈,指向在服务器或群集服务器上的需要进行读/写的文件。然后,客户端再发一个HTTP请求来读取这个文件,这个请求由单个服务器或一个小的群集服务器(使用复制或冗余RAID)进行处理,从本质上来说,这是一个共享存储系统,可以无限制扩展。但是,同其它共享存储系统一样,都面临着文件移动,管理难等挑战。
Amazon S3 使用的就是类似于这样的一个系统,使用基于HTTP的存储及你的内部目录了解你的文件存储地址。
Facebook - 最优秀的扩展案例就是Facebook系统, 该系统设计用于存放几十亿的文件,每秒处理几百万的请求。 该系统有点像 NFS/GFS 系统,在硬盘格式、有线网络格式上都采用了最佳的选择方案,在网络和硬盘上采取最短的文件传输路径。你不会想在不久的将来构建一个这样的系统,但是,花时间去研究一下,你会发现很有趣。
您会发现,成长型公司可选择多种不同的存储方式。但是,只有前几种存储方案对于成长型公司是比较实际的,DAS, NAS及群集存储。每种存储方案有其各自的优缺点。云络科技很高兴与您一起选择、构建并运行最适合您的解决方案。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

DDREASE est un outil permettant de récupérer des données à partir de périphériques de fichiers ou de blocs tels que des disques durs, des SSD, des disques RAM, des CD, des DVD et des périphériques de stockage USB. Il copie les données d'un périphérique bloc à un autre, laissant derrière lui les blocs corrompus et ne déplaçant que les bons blocs. ddreasue est un puissant outil de récupération entièrement automatisé car il ne nécessite aucune interruption pendant les opérations de récupération. De plus, grâce au fichier map ddasue, il peut être arrêté et repris à tout moment. Les autres fonctionnalités clés de DDREASE sont les suivantes : Il n'écrase pas les données récupérées mais comble les lacunes en cas de récupération itérative. Cependant, il peut être tronqué si l'outil est invité à le faire explicitement. Récupérer les données de plusieurs fichiers ou blocs en un seul

0. À quoi sert cet article ? Nous proposons DepthFM : un modèle d'estimation de profondeur monoculaire génératif de pointe, polyvalent et rapide. En plus des tâches traditionnelles d'estimation de la profondeur, DepthFM démontre également des capacités de pointe dans les tâches en aval telles que l'inpainting en profondeur. DepthFM est efficace et peut synthétiser des cartes de profondeur en quelques étapes d'inférence. Lisons ce travail ensemble ~ 1. Titre des informations sur l'article : DepthFM : FastMonocularDepthEstimationwithFlowMatching Auteur : MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Les performances de JAX, promu par Google, ont dépassé celles de Pytorch et TensorFlow lors de récents tests de référence, se classant au premier rang sur 7 indicateurs. Et le test n’a pas été fait sur le TPU présentant les meilleures performances JAX. Bien que parmi les développeurs, Pytorch soit toujours plus populaire que Tensorflow. Mais à l’avenir, des modèles plus volumineux seront peut-être formés et exécutés sur la base de la plate-forme JAX. Modèles Récemment, l'équipe Keras a comparé trois backends (TensorFlow, JAX, PyTorch) avec l'implémentation native de PyTorch et Keras2 avec TensorFlow. Premièrement, ils sélectionnent un ensemble de

Je pleure à mort. Le monde construit à la folie de grands modèles. Les données sur Internet ne suffisent pas du tout. Le modèle de formation ressemble à « The Hunger Games », et les chercheurs en IA du monde entier se demandent comment nourrir ces personnes avides de données. Ce problème est particulièrement important dans les tâches multimodales. À une époque où rien ne pouvait être fait, une équipe de start-up du département de l'Université Renmin de Chine a utilisé son propre nouveau modèle pour devenir la première en Chine à faire de « l'auto-alimentation des données générées par le modèle » une réalité. De plus, il s’agit d’une approche à deux volets, du côté compréhension et du côté génération, les deux côtés peuvent générer de nouvelles données multimodales de haute qualité et fournir un retour de données au modèle lui-même. Qu'est-ce qu'un modèle ? Awaker 1.0, un grand modèle multimodal qui vient d'apparaître sur le Forum Zhongguancun. Qui est l'équipe ? Moteur Sophon. Fondé par Gao Yizhao, doctorant à la Hillhouse School of Artificial Intelligence de l’Université Renmin.

Vous êtes confronté à un décalage et à une connexion de données mobile lente sur iPhone ? En règle générale, la puissance de l'Internet cellulaire sur votre téléphone dépend de plusieurs facteurs tels que la région, le type de réseau cellulaire, le type d'itinérance, etc. Vous pouvez prendre certaines mesures pour obtenir une connexion Internet cellulaire plus rapide et plus fiable. Correctif 1 – Forcer le redémarrage de l'iPhone Parfois, le redémarrage forcé de votre appareil réinitialise simplement beaucoup de choses, y compris la connexion cellulaire. Étape 1 – Appuyez simplement une fois sur la touche d’augmentation du volume et relâchez-la. Ensuite, appuyez sur la touche de réduction du volume et relâchez-la à nouveau. Étape 2 – La partie suivante du processus consiste à maintenir le bouton sur le côté droit. Laissez l'iPhone finir de redémarrer. Activez les données cellulaires et vérifiez la vitesse du réseau. Vérifiez à nouveau Correctif 2 – Changer le mode de données Bien que la 5G offre de meilleures vitesses de réseau, elle fonctionne mieux lorsque le signal est plus faible

Récemment, le milieu militaire a été submergé par la nouvelle : les avions de combat militaires américains peuvent désormais mener des combats aériens entièrement automatiques grâce à l'IA. Oui, tout récemment, l’avion de combat IA de l’armée américaine a été rendu public pour la première fois, dévoilant ainsi son mystère. Le nom complet de ce chasseur est Variable Stability Simulator Test Aircraft (VISTA). Il a été personnellement piloté par le secrétaire de l'US Air Force pour simuler une bataille aérienne en tête-à-tête. Le 2 mai, le secrétaire de l'US Air Force, Frank Kendall, a décollé à bord d'un X-62AVISTA à la base aérienne d'Edwards. Notez que pendant le vol d'une heure, toutes les actions de vol ont été effectuées de manière autonome par l'IA ! Kendall a déclaré : "Au cours des dernières décennies, nous avons réfléchi au potentiel illimité du combat air-air autonome, mais cela a toujours semblé hors de portée." Mais maintenant,

La dernière vidéo du robot Optimus de Tesla est sortie, et il peut déjà fonctionner en usine. À vitesse normale, il trie les batteries (les batteries 4680 de Tesla) comme ceci : Le responsable a également publié à quoi cela ressemble à une vitesse 20 fois supérieure - sur un petit "poste de travail", en sélectionnant et en sélectionnant et en sélectionnant : Cette fois, il est publié L'un des points forts de la vidéo est qu'Optimus réalise ce travail en usine, de manière totalement autonome, sans intervention humaine tout au long du processus. Et du point de vue d'Optimus, il peut également récupérer et placer la batterie tordue, en se concentrant sur la correction automatique des erreurs : concernant la main d'Optimus, le scientifique de NVIDIA Jim Fan a donné une évaluation élevée : la main d'Optimus est l'un des robots à cinq doigts du monde. le plus adroit. Ses mains ne sont pas seulement tactiles

Nouveau SOTA pour des capacités de compréhension de documents multimodaux ! L'équipe Alibaba mPLUG a publié le dernier travail open source mPLUG-DocOwl1.5, qui propose une série de solutions pour relever les quatre défis majeurs que sont la reconnaissance de texte d'image haute résolution, la compréhension générale de la structure des documents, le suivi des instructions et l'introduction de connaissances externes. Sans plus tarder, examinons d’abord les effets. Reconnaissance et conversion en un clic de graphiques aux structures complexes au format Markdown : Des graphiques de différents styles sont disponibles : Une reconnaissance et un positionnement de texte plus détaillés peuvent également être facilement traités : Des explications détaillées sur la compréhension du document peuvent également être données : Vous savez, « Compréhension du document " est actuellement un scénario important pour la mise en œuvre de grands modèles linguistiques. Il existe de nombreux produits sur le marché pour aider à la lecture de documents. Certains d'entre eux utilisent principalement des systèmes OCR pour la reconnaissance de texte et coopèrent avec LLM pour le traitement de texte.
