Storm流计算从入门到精通之技术篇(高并发策略、批处理事务、Trid
对这个课程有兴趣的可以加我qq2059055336和我联系 Storm是什么? 为什么学习Storm? Storm是Twitter开源的分布式实时大数据处理框架,被业界称为实时版Hadoop。 随着越来越多的场景对Hadoop的MapReduce高延迟无法容忍,比如网站统计、推荐系统、预警系统、金
对这个课程有兴趣的可以加我qq2059055336和我联系
Storm是什么? 为什么学习Storm? Storm是Twitter开源的分布式实时大数据处理框架,被业界称为实时版Hadoop。 随着越来越多的场景对Hadoop的MapReduce高延迟无法容忍,比如网站统计、推荐系统、预警系统、金融系统(高频交易、股票)等等, 大数据实时处理解决方案(流计算)的应用日趋广泛,目前已是分布式技术领域最新爆发点,而Storm更是流计算技术中的佼佼者和主流。 按照storm作者的说法,Storm对于实时计算的意义类似于Hadoop对于批处理的意义。Hadoop提供了map、reduce原语,使我们的批处理程序变得简单和高效。 同样,Storm也为实时计算提供了一些简单高效的原语,而且Storm的Trident是基于Storm原语更高级的抽象框架,类似于基于Hadoop的Pig框架, 让开发更加便利和高效。本课程会深入、全面的讲解Storm,并穿插企业场景实战讲述Storm的运用。 淘宝双11的大屏幕实时监控效果冲击了整个IT界,业界为之惊叹的同时更是引起对该技术的探索。 学完本课程你可以自己开发升级版的“淘宝双11”,还等什么?
课程大纲
1、Storm简介和课程介绍
2、Storm原理和概念详解
3、Zookeeper集群搭建及基本使用
4、Storm集群搭建及测试
5、API简介和入门案例开发
6、Spout的Tail特性、storm-starter及maven使用、Grouping策略
7、实例讲解Grouping策略及并发度
8、并发度详解、案例开发(高并发运用)
9、案例开发——计算网站PV
10、案例优化引入Zookeeper锁控制线程操作
11、计算网站UV(去重计算模式)
后续经典内容:
批处理事务详解
事务案例分析
事务案例实战开发
DRPC详解
DRPC实战开发
第二章 Storm Trident
Storm Trident 详解
Trident API深入
案例分析
实战案例开发
【运维篇】
配置参数、Storm命令等详解
集群统一启动和停止shell脚本开发
Storm集群和作业监控告警开发(可接告警平台)
课程中会穿插经验和技巧分享,常见场景解决方案分析等,可帮助学员迅速积累经验值。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds



Kimi : En une seule phrase, un PPT est prêt en seulement dix secondes. PPT est tellement ennuyeux ! Pour tenir une réunion, vous devez avoir un PPT ; pour rédiger un rapport hebdomadaire, vous devez avoir un PPT ; pour solliciter des investissements, vous devez présenter un PPT ; même pour accuser quelqu'un de tricherie, vous devez envoyer un PPT ; L'université ressemble plus à une spécialisation PPT. Vous regardez le PPT en classe et faites le PPT après les cours. Peut-être que lorsque Dennis Austin a inventé le PPT il y a 37 ans, il ne s'attendait pas à ce qu'un jour le PPT devienne aussi répandu. Parler de notre dure expérience de création de PPT nous fait monter les larmes aux yeux. "Il m'a fallu trois mois pour réaliser un PPT de plus de 20 pages, et je l'ai révisé des dizaines de fois. J'avais envie de vomir quand j'ai vu le PPT." "À mon apogée, je faisais cinq PPT par jour, et même ma respiration." était PPT." Si vous avez une réunion impromptue, vous devriez le faire

Tôt le matin du 20 juin, heure de Pékin, CVPR2024, la plus grande conférence internationale sur la vision par ordinateur qui s'est tenue à Seattle, a officiellement annoncé le meilleur article et d'autres récompenses. Cette année, un total de 10 articles ont remporté des prix, dont 2 meilleurs articles et 2 meilleurs articles étudiants. De plus, il y a eu 2 nominations pour les meilleurs articles et 4 nominations pour les meilleurs articles étudiants. La conférence la plus importante dans le domaine de la vision par ordinateur (CV) est la CVPR, qui attire chaque année un grand nombre d'instituts de recherche et d'universités. Selon les statistiques, un total de 11 532 articles ont été soumis cette année, dont 2 719 ont été acceptés, avec un taux d'acceptation de 23,6 %. Selon l'analyse statistique des données CVPR2024 du Georgia Institute of Technology, du point de vue des sujets de recherche, le plus grand nombre d'articles est la synthèse et la génération d'images et de vidéos (Imageandvideosyn

Nous savons que le LLM est formé sur des clusters informatiques à grande échelle utilisant des données massives. Ce site a présenté de nombreuses méthodes et technologies utilisées pour aider et améliorer le processus de formation LLM. Aujourd'hui, ce que nous souhaitons partager est un article qui approfondit la technologie sous-jacente et présente comment transformer un ensemble de « bare metals » sans même un système d'exploitation en un cluster informatique pour la formation LLM. Cet article provient d'Imbue, une startup d'IA qui s'efforce d'atteindre une intelligence générale en comprenant comment les machines pensent. Bien sûr, transformer un tas de « bare metal » sans système d'exploitation en un cluster informatique pour la formation LLM n'est pas un processus facile, plein d'exploration et d'essais et d'erreurs, mais Imbue a finalement réussi à former un LLM avec 70 milliards de paramètres et dans. le processus s'accumule

Rédacteur du Machine Power Report : Yang Wen La vague d’intelligence artificielle représentée par les grands modèles et l’AIGC a discrètement changé notre façon de vivre et de travailler, mais la plupart des gens ne savent toujours pas comment l’utiliser. C'est pourquoi nous avons lancé la rubrique « AI in Use » pour présenter en détail comment utiliser l'IA à travers des cas d'utilisation de l'intelligence artificielle intuitifs, intéressants et concis et stimuler la réflexion de chacun. Nous invitons également les lecteurs à soumettre des cas d'utilisation innovants et pratiques. Lien vidéo : https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Récemment, le vlog de la vie d'une fille vivant seule est devenu populaire sur Xiaohongshu. Une animation de style illustration, associée à quelques mots de guérison, peut être facilement récupérée en quelques jours seulement.

La génération augmentée par récupération (RAG) est une technique qui utilise la récupération pour améliorer les modèles de langage. Plus précisément, avant qu'un modèle de langage ne génère une réponse, il récupère les informations pertinentes à partir d'une vaste base de données de documents, puis utilise ces informations pour guider le processus de génération. Cette technologie peut considérablement améliorer l'exactitude et la pertinence du contenu, atténuer efficacement le problème des hallucinations, augmenter la vitesse de mise à jour des connaissances et améliorer la traçabilité de la génération de contenu. RAG est sans aucun doute l’un des domaines de recherche les plus passionnants en matière d’intelligence artificielle. Pour plus de détails sur RAG, veuillez vous référer à l'article de la rubrique de ce site "Quelles sont les nouveautés de RAG, spécialisée dans le rattrapage des défauts des grands modèles ?" Cette revue l'explique clairement. Mais RAG n'est pas parfait et les utilisateurs rencontrent souvent des « problèmes » lorsqu'ils l'utilisent. Récemment, la solution avancée d'IA générative de NVIDIA

Les techniques de concurrence et de multithreading utilisant les fonctions Java peuvent améliorer les performances des applications, notamment en suivant les étapes suivantes : Comprendre les concepts de concurrence et de multithreading. Tirez parti des bibliothèques de concurrence et multithread de Java telles que ExecutorService et Callable. Pratiquez des cas tels que la multiplication matricielle multithread pour réduire considérablement le temps d'exécution. Profitez des avantages d’une vitesse de réponse accrue des applications et d’une efficacité de traitement optimisée grâce à la concurrence et au multithreading.

La concurrence et les coroutines sont utilisées dans la conception GoAPI pour : Traitement hautes performances : traiter plusieurs requêtes simultanément pour améliorer les performances. Traitement asynchrone : utilisez des coroutines pour traiter des tâches (telles que l'envoi d'e-mails) de manière asynchrone, libérant ainsi le thread principal. Traitement des flux : utilisez des coroutines pour traiter efficacement les flux de données (tels que les lectures de bases de données).

Le 24 juillet, Keling AI, grand modèle de génération vidéo Kuaishou, a annoncé que le modèle de base avait de nouveau été mis à niveau et était entièrement ouvert aux tests internes. Kuaishou a déclaré que afin de permettre à davantage d'utilisateurs d'utiliser Keling AI et de mieux répondre aux différents niveaux d'utilisation des créateurs, il lancera désormais également officiellement un système d'adhésion pour différentes catégories de créateurs, sur la base de tests internes entièrement ouverts. membres. Fournir des services fonctionnels exclusifs correspondants. Dans le même temps, le modèle de base de Keling AI a également été à nouveau mis à niveau pour améliorer encore l'expérience utilisateur. L'effet de modèle de base a été mis à niveau pour améliorer encore l'expérience utilisateur. Depuis sa sortie il y a plus d'un mois, Keling AI a été mis à niveau et itéré à plusieurs reprises. Avec le lancement de ce système d'adhésion, l'effet de modèle de base de Keling AI a été amélioré. à nouveau subi une transformation. La première est que la qualité de l'image a été considérablement améliorée et les effets visuels générés grâce au modèle de base amélioré.
