数据库基础

Jun 07, 2016 pm 04:10 PM
基础 层次 数据 数据库 模型 pratique 结构 exprimer

1最常用的数据模型: (1)层次模型:用树形结构来表示各类实体以及实体间的关系。 层次模型中,只有一个节点没有双亲节点,即根节点。根以外的其他节点有且只有一个双亲节点。 层次节点的优点是:简单,高效。 层次节点的缺点是:无法直接实现多对多。 (2)

1最常用的数据模型:
(1)层次模型:用树形结构来表示各类实体以及实体间的关系。
层次模型中,只有一个节点没有双亲节点,即根节点。根以外的其他节点有且只有一个双亲节点。
层次节点的优点是:简单,高效。
层次节点的缺点是:无法直接实现多对多。
(2)网状模型:允许一个以上的节点无双亲,一个界定啊可以有多于一个的双亲。
网状模型的优点:可实现多对多俩系,存储效率高。
网状模型的缺点:结构复杂,不易实现。
层次模型和网状模型是非关系模型。
(3)关系模型:由一组关系组成。
①关系:一个关系对应通常说的一张表(二维表)。
②元组:表中的一行即为一个元组。
③属性:表中的一列即为一个属性。给每一个属性起一个名称即属性名。
④码:表中的某个属性组,可以唯一确定一个元组。如学生的学号可以唯一确定一个学生
⑤域:属性的取值范围。如性别的域是(男,女)
关系模型的特征:
①属性名称都不相同,且都是原子的(不可再分)
②同一属性的数据类型是相同的
③每行数据(元组)是不完全相同的。
④表中行和列的顺序可以任意排列,即行和列的先后次序对表的性质不发生影响。
(4)面向对象模型
(5)对象关系模型
2、数据库语言:
DCL 数据控制语言(安全性)
DDL 数据定义语言(创建模式)
DML 数据操纵语言(数据更新(增删改))
DQL 数据查询语言(查询)
3、SQL:结构化查询语言,是数据库的标准语言。
SQL的动词:
(1)数据查询 select
(2)数据定义 create(建表)、drop(删除)、alter(修改)
(3)数据操纵 insert(插入)、update(更新)、delete(删除)
(4)数据控制 grant(授权)、revoke(回收)
4、数据类型
char(n) 长度为n的定长字符串
varchar(n) 最大长度为n的可变长字符串
int 长整型
smallint 短整数
numeric(p,d) 定点数,由p位数字(不包括小数点、符号)组成,小数后面有d位数字
real 取决于机器精度的浮点数
double precision 取决于机器精度的双精度浮点数
float(n) 浮点数,精度至少为n位数字
date 日期,包含年、月、日,格式为YYYY-MM-DD
time 时间,包含一日的时,分,秒,格式为HH:MM:SS
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Où trouver la courte de la grue à atomide atomique
1 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

KAN, qui remplace MLP, a été étendu à la convolution par des projets open source KAN, qui remplace MLP, a été étendu à la convolution par des projets open source Jun 01, 2024 pm 10:03 PM

Plus tôt ce mois-ci, des chercheurs du MIT et d'autres institutions ont proposé une alternative très prometteuse au MLP – KAN. KAN surpasse MLP en termes de précision et d’interprétabilité. Et il peut surpasser le MLP fonctionnant avec un plus grand nombre de paramètres avec un très petit nombre de paramètres. Par exemple, les auteurs ont déclaré avoir utilisé KAN pour reproduire les résultats de DeepMind avec un réseau plus petit et un degré d'automatisation plus élevé. Plus précisément, le MLP de DeepMind compte environ 300 000 paramètres, tandis que le KAN n'en compte qu'environ 200. KAN a une base mathématique solide comme MLP est basé sur le théorème d'approximation universelle, tandis que KAN est basé sur le théorème de représentation de Kolmogorov-Arnold. Comme le montre la figure ci-dessous, KAN a

Aucune donnée OpenAI requise, rejoignez la liste des grands modèles de code ! UIUC publie StarCoder-15B-Instruct Aucune donnée OpenAI requise, rejoignez la liste des grands modèles de code ! UIUC publie StarCoder-15B-Instruct Jun 13, 2024 pm 01:59 PM

À la pointe de la technologie logicielle, le groupe de l'UIUC Zhang Lingming, en collaboration avec des chercheurs de l'organisation BigCode, a récemment annoncé le modèle de grand code StarCoder2-15B-Instruct. Cette réalisation innovante a permis une percée significative dans les tâches de génération de code, dépassant avec succès CodeLlama-70B-Instruct et atteignant le sommet de la liste des performances de génération de code. Le caractère unique de StarCoder2-15B-Instruct réside dans sa stratégie d'auto-alignement pur. L'ensemble du processus de formation est ouvert, transparent et complètement autonome et contrôlable. Le modèle génère des milliers d'instructions via StarCoder2-15B en réponse au réglage fin du modèle de base StarCoder-15B sans recourir à des annotations manuelles coûteuses.

Surpassant largement le DPO : l'équipe de Chen Danqi a proposé une optimisation simple des préférences SimPO et a également affiné le modèle open source 8B le plus puissant. Surpassant largement le DPO : l'équipe de Chen Danqi a proposé une optimisation simple des préférences SimPO et a également affiné le modèle open source 8B le plus puissant. Jun 01, 2024 pm 04:41 PM

Afin d'aligner les grands modèles de langage (LLM) sur les valeurs et les intentions humaines, il est essentiel d'apprendre les commentaires humains pour garantir qu'ils sont utiles, honnêtes et inoffensifs. En termes d'alignement du LLM, une méthode efficace est l'apprentissage par renforcement basé sur le retour humain (RLHF). Bien que les résultats de la méthode RLHF soient excellents, certains défis d’optimisation sont impliqués. Cela implique de former un modèle de récompense, puis d'optimiser un modèle politique pour maximiser cette récompense. Récemment, certains chercheurs ont exploré des algorithmes hors ligne plus simples, dont l’optimisation directe des préférences (DPO). DPO apprend le modèle politique directement sur la base des données de préférence en paramétrant la fonction de récompense dans RLHF, éliminant ainsi le besoin d'un modèle de récompense explicite. Cette méthode est simple et stable

Yolov10 : explication détaillée, déploiement et application en un seul endroit ! Yolov10 : explication détaillée, déploiement et application en un seul endroit ! Jun 07, 2024 pm 12:05 PM

1. Introduction Au cours des dernières années, les YOLO sont devenus le paradigme dominant dans le domaine de la détection d'objets en temps réel en raison de leur équilibre efficace entre le coût de calcul et les performances de détection. Les chercheurs ont exploré la conception architecturale de YOLO, les objectifs d'optimisation, les stratégies d'expansion des données, etc., et ont réalisé des progrès significatifs. Dans le même temps, le recours à la suppression non maximale (NMS) pour le post-traitement entrave le déploiement de bout en bout de YOLO et affecte négativement la latence d'inférence. Dans les YOLO, la conception de divers composants manque d’une inspection complète et approfondie, ce qui entraîne une redondance informatique importante et limite les capacités du modèle. Il offre une efficacité sous-optimale et un potentiel d’amélioration des performances relativement important. Dans ce travail, l'objectif est d'améliorer encore les limites d'efficacité des performances de YOLO à la fois en post-traitement et en architecture de modèle. à cette fin

Li Feifei révèle l'orientation entrepreneuriale de « l'intelligence spatiale » : la visualisation se transforme en aperçu, la vue devient compréhension et la compréhension mène à l'action Li Feifei révèle l'orientation entrepreneuriale de « l'intelligence spatiale » : la visualisation se transforme en aperçu, la vue devient compréhension et la compréhension mène à l'action Jun 01, 2024 pm 02:55 PM

Stanford Li Feifei a dévoilé pour la première fois le nouveau concept « d'intelligence spatiale » après avoir lancé sa propre entreprise. Ce n'est pas seulement son orientation entrepreneuriale, mais aussi « l'étoile du Nord » qui la guide, elle la considère comme « la pièce clé du puzzle pour résoudre le problème de l'intelligence artificielle ». La visualisation mène à la perspicacité ; la vue mène à la compréhension ; la compréhension mène à l’action. Basé sur la conférence TED de 15 minutes de Li Feifei, il est entièrement révélé, depuis l'origine de l'évolution de la vie il y a des centaines de millions d'années, jusqu'à la façon dont les humains ne sont pas satisfaits de ce que la nature leur a donné et développent l'intelligence artificielle, jusqu'à la façon de construire l'intelligence spatiale dans la prochaine étape. Il y a neuf ans, Li Feifei a présenté au monde le nouveau ImageNet sur la même scène - l'un des points de départ de cette explosion d'apprentissage profond. Elle a elle-même encouragé les internautes : si vous regardez les deux vidéos, vous pourrez comprendre la vision par ordinateur des 10 dernières années.

L'Université Tsinghua a pris le relais et YOLOv10 est sorti : les performances ont été grandement améliorées et il figurait sur la hot list de GitHub L'Université Tsinghua a pris le relais et YOLOv10 est sorti : les performances ont été grandement améliorées et il figurait sur la hot list de GitHub Jun 06, 2024 pm 12:20 PM

La série de référence YOLO de systèmes de détection de cibles a une fois de plus reçu une mise à niveau majeure. Depuis la sortie de YOLOv9 en février de cette année, le relais de la série YOLO (YouOnlyLookOnce) a été passé entre les mains de chercheurs de l'Université Tsinghua. Le week-end dernier, la nouvelle du lancement de YOLOv10 a attiré l'attention de la communauté IA. Il est considéré comme un cadre révolutionnaire dans le domaine de la vision par ordinateur et est connu pour ses capacités de détection d'objets de bout en bout en temps réel, poursuivant l'héritage de la série YOLO en fournissant une solution puissante alliant efficacité et précision. Adresse de l'article : https://arxiv.org/pdf/2405.14458 Adresse du projet : https://github.com/THU-MIG/yo

Les startups d'IA ont collectivement transféré leurs emplois vers OpenAI, et l'équipe de sécurité s'est regroupée après le départ d'Ilya ! Les startups d'IA ont collectivement transféré leurs emplois vers OpenAI, et l'équipe de sécurité s'est regroupée après le départ d'Ilya ! Jun 08, 2024 pm 01:00 PM

" sept péchés capitaux" » Dissiper les rumeurs : selon des informations divulguées et des documents obtenus par Vox, la haute direction d'OpenAI, y compris Altman, était bien au courant de ces dispositions de récupération de capitaux propres et les a approuvées. De plus, OpenAI est confronté à un problème grave et urgent : la sécurité de l’IA. Les récents départs de cinq employés liés à la sécurité, dont deux de ses employés les plus en vue, et la dissolution de l'équipe « Super Alignment » ont une nouvelle fois mis les enjeux de sécurité d'OpenAI sur le devant de la scène. Le magazine Fortune a rapporté qu'OpenA

Le modèle 70B génère 1 000 jetons en quelques secondes, la réécriture du code dépasse GPT-4o, de l'équipe Cursor, un artefact de code investi par OpenAI Le modèle 70B génère 1 000 jetons en quelques secondes, la réécriture du code dépasse GPT-4o, de l'équipe Cursor, un artefact de code investi par OpenAI Jun 13, 2024 pm 03:47 PM

Modèle 70B, 1000 tokens peuvent être générés en quelques secondes, ce qui se traduit par près de 4000 caractères ! Les chercheurs ont affiné Llama3 et introduit un algorithme d'accélération. Par rapport à la version native, la vitesse est 13 fois plus rapide ! Non seulement il est rapide, mais ses performances sur les tâches de réécriture de code dépassent même GPT-4o. Cette réalisation vient d'anysphere, l'équipe derrière le populaire artefact de programmation d'IA Cursor, et OpenAI a également participé à l'investissement. Il faut savoir que sur Groq, un framework d'accélération d'inférence rapide bien connu, la vitesse d'inférence de 70BLlama3 n'est que de plus de 300 jetons par seconde. Avec la vitesse de Cursor, on peut dire qu'il permet une édition complète et quasi instantanée des fichiers de code. Certaines personnes l'appellent un bon gars, si tu mets Curs

See all articles