MySQL中实现高性能高并发计数器方案(例如文章点击数)
现在有很多的项目,对计数器的实现甚是随意,比如在实现网站文章点击数的时候,是这么设计数据表的,如:”article_id, article_name, article_content, article_author, article_view……在article_view中记录该文章的浏览量。诈一看似乎没有问题。对于小站
现在有很多的项目,对计数器的实现甚是随意,比如在实现网站文章点击数的时候,是这么设计数据表的,如:”article_id, article_name, article_content, article_author, article_view……在article_view中记录该文章的浏览量。诈一看似乎没有问题。对于小站,比如本博客,就是这么做的,因为小菜的博客难道会涉及并发问题吗?答案显而易见,一天没多少IP,而且以后不会很大。
言归正传,对文章资讯类为主的项目,在浏览一个页面的时候不但要进行大量的查(查询上文的记录,已经所属分类的名字、热门文章资讯评论、TAG等),还要进行写操作(更新浏览数点击数)。把文章的详细内容和计数器放在一张表尽管对开发很方便,但是会造成数据库的压力过大(不然为什么大项目都要分库分表呢)。
那么,分两张表存放就好了么?一张表存文章详细信息,另一张表单独存计数器。
CREATE TABLE `article_view`(
`article_id` int(11) NOT NULL,
`view` int(11) NOT NULL,
PRIMARY KEY (`article_id`)
)ENGINE=InnoDB;
这种方式,虽然分担了文章表的压力,但是每当有一个进程请求更新的时候,都会产生全局的互斥锁,只能串行,不能并行。在高并发下会有较长的等待时间。
另一种比较好的办法是对每一个文章的计数器不是一行,而是多行,比如吧,一百行。每次随机更新其中一行,该文章的浏览数就是所有行的和。
CREATE TABLE `article_view`(
`article_id` int(11) NOT NULL,
`pond` tinyint(4) NOT NULL COMMENT '池子,就是用来随机用的',
`view` int(11) NOT NULL,
PRIMARY KEY (`article_id`,`pond`)
)ENGINE=InnoDB;
小访问量的随机池子100个肯定多了,三五个足矣。每次访问的时候,随机一个数字(1-100)作为pond,如何该pond存在则更新view+1,否则插入,view=1。借助DUPLICATE KEY,不然在程序里是实现得先SELECT,判断一下再INSERT或者UPDATE。
INSERT INTO `article_view` (`article_id`, `pond`, `view`) VALUES (`123`, RAND()*100, 1) ON DUPLICATE KEY UPDATE `view`=`view`+1
获取指定文章的总访问量的时候:
SELECT SUM(`view`) FROM `article_view` WHERE `article_id`='123'
PS:凡事都是双刃剑。为了更快的读我们通常要牺牲一些东西。在读比较多的表要加快读的速度,在写较多的表要加快写的速度。各自权衡。在加快读的速度的时候,我们牺牲的并不仅仅是写的性能,还有开发成本,开发变的更复杂,维护成本等。所以并不是读的速度越快越好,需要找一个平衡点。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Les principales raisons pour lesquelles vous ne pouvez pas vous connecter à MySQL en tant que racines sont des problèmes d'autorisation, des erreurs de fichier de configuration, des problèmes de mot de passe incohérents, des problèmes de fichiers de socket ou une interception de pare-feu. La solution comprend: vérifiez si le paramètre Bind-Address dans le fichier de configuration est configuré correctement. Vérifiez si les autorisations de l'utilisateur racine ont été modifiées ou supprimées et réinitialisées. Vérifiez que le mot de passe est précis, y compris les cas et les caractères spéciaux. Vérifiez les paramètres et les chemins d'autorisation du fichier de socket. Vérifiez que le pare-feu bloque les connexions au serveur MySQL.

Lorsque MySQL modifie la structure du tableau, les verrous de métadonnées sont généralement utilisés, ce qui peut entraîner le verrouillage du tableau. Pour réduire l'impact des serrures, les mesures suivantes peuvent être prises: 1. Gardez les tables disponibles avec le DDL en ligne; 2. Effectuer des modifications complexes en lots; 3. Opérez pendant les périodes petites ou hors pointe; 4. Utilisez des outils PT-OSC pour obtenir un contrôle plus fin.

Dans la base de données MySQL, la relation entre l'utilisateur et la base de données est définie par les autorisations et les tables. L'utilisateur a un nom d'utilisateur et un mot de passe pour accéder à la base de données. Les autorisations sont accordées par la commande Grant, tandis que le tableau est créé par la commande Create Table. Pour établir une relation entre un utilisateur et une base de données, vous devez créer une base de données, créer un utilisateur, puis accorder des autorisations.

MySQL ne peut pas fonctionner directement sur Android, mais il peut être implémenté indirectement en utilisant les méthodes suivantes: à l'aide de la base de données légère SQLite, qui est construite sur le système Android, ne nécessite pas de serveur distinct et a une petite utilisation des ressources, qui est très adaptée aux applications de périphériques mobiles. Connectez-vous à distance au serveur MySQL et connectez-vous à la base de données MySQL sur le serveur distant via le réseau pour la lecture et l'écriture de données, mais il existe des inconvénients tels que des dépendances de réseau solides, des problèmes de sécurité et des coûts de serveur.

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

Simplification de l'intégration des données: AmazonrDSMysQL et l'intégration Zero ETL de Redshift, l'intégration des données est au cœur d'une organisation basée sur les données. Les processus traditionnels ETL (extrait, converti, charge) sont complexes et prennent du temps, en particulier lors de l'intégration de bases de données (telles que AmazonrDSMysQL) avec des entrepôts de données (tels que Redshift). Cependant, AWS fournit des solutions d'intégration ETL Zero qui ont complètement changé cette situation, fournissant une solution simplifiée et à temps proche pour la migration des données de RDSMySQL à Redshift. Cet article plongera dans l'intégration RDSMYSQL ZERO ETL avec Redshift, expliquant comment il fonctionne et les avantages qu'il apporte aux ingénieurs de données et aux développeurs.

1. Utilisez l'index correct pour accélérer la récupération des données en réduisant la quantité de données numérisées SELECT * FROMMLOYEESEESHWHERELAST_NAME = 'SMITH'; Si vous recherchez plusieurs fois une colonne d'une table, créez un index pour cette colonne. If you or your app needs data from multiple columns according to the criteria, create a composite index 2. Avoid select * only those required columns, if you select all unwanted columns, this will only consume more server memory and cause the server to slow down at high load or frequency times For example, your table contains columns such as created_at and updated_at and timestamps, and then avoid selecting * because they do not require inefficient query se
