Table des matières
HDFS-2246 曾经实现的Short-Circuit LocalReads
HDFS-347:让Short-Circuit Local Reads 安全
Cache 文件描述符
HDFS-347配置
性能
结论
Maison base de données tutoriel mysql 如何提高hadoop中Short-Circuit Local Reads时的性能及安全性

如何提高hadoop中Short-Circuit Local Reads时的性能及安全性

Jun 07, 2016 pm 04:32 PM
hadoop 如何 提高

本文由 ImportNew - Royce Wong 翻译自 Cloudera。如需转载本文,请先参见文章末尾处的转载要求。 大家都知道,apache hadoop的一个关键思想就是移动计算比移动数据更廉价。所以只要可能,我们就乐忠移动计算到数据地方。因此,HDFS通常使用许多的本地读,在

本文由 ImportNew - Royce Wong 翻译自 Cloudera。如需转载本文,请先参见文章末尾处的转载要求。

大家都知道,apache hadoop的一个关键思想就是移动计算比移动数据更廉价。所以只要可能,我们就乐忠移动计算到数据地方。因此,HDFS通常使用许多的本地读,在本地机器构造读对象读出数据。

最初,hdfs本地读其实和远程读使用的同一种方式:client端通过TCP 连接DN,并通过DataTransferProtocol传输数据。该方法简单,但是有一些不好的地方。例如,DN需要维护一个线程运行,并为每个client打开的tcp套接字建立连接传输数据。在linux内核中tcp协议是有开销的,同时DataTransferProtocol本身也有开销。这里有优化空间。

本文大家将会了解到一项HDFS新的优化,叫做“secure short-circuit local reads”,学习该优化如何实现并怎样提速本地读的。

HDFS-2246 曾经实现的Short-Circuit LocalReads

HDFS-2246,ndrew Purtell, Suresh Srinivas, Jitendra Nath Pandey, and Benoy Antony等人添加了一项称为“short-circuit local reads”优化。

其关键思想如下:因为客户端和数据在同一个节点,所以没必要再去和DN交互。客户端本身直接就从本地磁盘读出数据。这个性能优化被加入了CDH3u3。

HDFS-2246实现的short-circuit local read 是一个好的开始,但其带来了许多配置上麻烦。系统管理员必须改变DN数据目录权限,允许客户端打开相关文件。还需要定义一个白名单用户,可以使用这个特性。其他用户不允许。通常,这些用户被搞到一个特殊的UNIX 用户组里。

不幸的是,这种权限改变带来了安全漏洞。有这种权限的用户就可以直接浏览所有数据了,不仅是他们需要的数据。简直就是超级用户啊!这个在一些场景下可以接受,比如 HBase用户,但是一般来讲,它还是带来了问题。这不是一个通用的方式。

HDFS-347:让Short-Circuit Local Reads 安全

HDFS-2246的主要问题就是它将DN的所有数据路径直接开放给了客户端。其实,客户端只是想要几个其关心的数据文件。

幸亏Unix提供了可以这样做的机制,文件描述符。HDFS-347使用该机制实现安全的short-circuit local reads. 客户端向DN请求数据时,DN简单地打开blockfile和元数据文件,并直接传给客户端,而不是将路径传给客户端。因为文件描述符是只读的,客户端不能修改接收到的文件。同时不支持对block所在路径的访问,所以也就不能访问其他数据。

Windows 有类似的机制允许将文件描述符在进程间传递。CDH目前还不支持该特性,同时Windows用户可以配置dfs.cient.use.legacy.blockreader.local为true使用legacy block reader。

Cache 文件描述符

HDFS客户端经常多次读取相同的block文件(y尤其对HBase而言)。为了提高这种场景下的本地读,HDFS-2246实现的机制中有一个block 路径的Cache。Cache允许客户端重新打开block文件,而不需要再去访问DN。

相对于路径Cache,新机制实现了一个FileInputStreamCache,缓存文件描述符。优点在于不需要客户端重新打开数据文件。该处实现性能优于老的读取机制。

cache的大小可以通过dfs.client.read.shortcircuit.stream.cache.size调整,cache超时时间通过dfs.client.read.shortcircuit.streams.cache.expiry.ms设定。也可以关掉该cache,设置cache大小为0即可。大多数情况下,默认配置就可以了。如果你面对的是特殊的大规模的工作集和高文件描述符限制,你可以试着提高参数值。

HDFS-347配置

HDFS-347实现的新机制,所有hdfs用户都可以使用该特性,而不是局限于配置的几个用户。也没有必要去修改Unix用户组来设定谁可以访问DN路径。然而,java标准库并不包含支持文件描述符传递的库,所以该特性需要使用JNI。同时需要安装libhadoop.so库.

HDFS-347也需要一个Unix域套接字路径,可通过dfs.domain.socket.path设置。该路径必须安全地阻止无优先级进程进行中间人攻击(MITM攻击,man-in-the-middle attack)。每个套接字路径必须是root拥有或者DN用户拥有,不能使用人人都可以写或者用户组可写方式的路径。

如果你安装cloudera包 rpm,deb,cloudera会创建一个默认的安全的unix域套接字路径。同时会讲libhadoop.so安装到正确路径下。

详细配置信息可以参考 the upstream documentation

性能

新实现到底咋样呢?作者使用 hio_bench程序获取到一些性能统计数据。hiobench github 地址 https://github.com/cmccabe/hiotest。

测试案例运行在8核 intelXeon 2.13 12块磁盘服务器上,集群使用CDH4.3.1,底层使用ext4文件系统。 下图每个值是运行三次的平均值。

在所有测试案例中,HDFS-347实现是最快的,可能归功于FileInputStreamCache.相反HDFS-2246实现会重复打开ext4 块文件多次,打开文件是一个重操作。

short-circuit实现在随机读场景下比顺序读相对于hdfs初始的读取机制有相对优势。部分原因是为short-circuit local reads场景的 高速预读(readahead)还未实现。可以参考HDFS-4697参与相关讨论。

结论

SCR (short-circuit local reads)是hadoop模型下优化的一项极好的案例。他们也有如何解决规模不断增长的挑战,Cloudera目前正挑战在集群中获取每个节点更多性能方向的研究。

如果你正使用CDH4.2 或以上版本,用下新的实现把!

Colin McCabe is a Software Engineer on the Platform team, and a Hadoop Committer.

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Erreurs Java : erreurs Hadoop, comment les gérer et les éviter Erreurs Java : erreurs Hadoop, comment les gérer et les éviter Jun 24, 2023 pm 01:06 PM

Erreurs Java : erreurs Hadoop, comment les gérer et les éviter Lorsque vous utilisez Hadoop pour traiter des données volumineuses, vous rencontrez souvent des erreurs d'exception Java, qui peuvent affecter l'exécution des tâches et provoquer l'échec du traitement des données. Cet article présentera quelques erreurs Hadoop courantes et fournira des moyens de les gérer et de les éviter. Java.lang.OutOfMemoryErrorOutOfMemoryError est une erreur provoquée par une mémoire insuffisante de la machine virtuelle Java. Quand Hadoop est

Utilisation de Hadoop et HBase dans Beego pour le stockage et les requêtes Big Data Utilisation de Hadoop et HBase dans Beego pour le stockage et les requêtes Big Data Jun 22, 2023 am 10:21 AM

Avec l'avènement de l'ère du Big Data, le traitement et le stockage des données sont devenus de plus en plus importants, et la gestion et l'analyse efficaces de grandes quantités de données sont devenues un défi pour les entreprises. Hadoop et HBase, deux projets de la Fondation Apache, proposent une solution de stockage et d'analyse du Big Data. Cet article explique comment utiliser Hadoop et HBase dans Beego pour le stockage et les requêtes Big Data. 1. Introduction à Hadoop et HBase Hadoop est un système informatique et de stockage distribué open source qui peut

Comment améliorer les performances des requêtes de base de données grâce au multithread PHP Comment améliorer les performances des requêtes de base de données grâce au multithread PHP Jun 29, 2023 pm 08:27 PM

Comment améliorer les performances des requêtes de base de données grâce au multithreading PHP Introduction : Avec le développement rapide d'Internet, les performances des requêtes de base de données sont devenues l'un des défis importants auxquels sont confrontés les développeurs. En tant que langage de script côté serveur largement utilisé, PHP joue également un rôle important dans les requêtes de bases de données. Cet article explorera comment améliorer les performances des requêtes de base de données grâce à la technologie multithread PHP pour répondre aux besoins de requêtes simultanées élevées. 1. Qu'est-ce que le multithreading ? Avant d'expliquer comment utiliser le multithreading pour améliorer les performances des requêtes de base de données, nous devons d'abord comprendre ce qu'est le multithreading. populaire

Comment utiliser PHP et Hadoop pour le traitement du Big Data Comment utiliser PHP et Hadoop pour le traitement du Big Data Jun 19, 2023 pm 02:24 PM

Alors que la quantité de données continue d’augmenter, les méthodes traditionnelles de traitement des données ne peuvent plus relever les défis posés par l’ère du Big Data. Hadoop est un cadre informatique distribué open source qui résout le problème de goulot d'étranglement des performances causé par les serveurs à nœud unique dans le traitement du Big Data grâce au stockage distribué et au traitement de grandes quantités de données. PHP est un langage de script largement utilisé dans le développement Web et présente les avantages d'un développement rapide et d'une maintenance facile. Cet article explique comment utiliser PHP et Hadoop pour le traitement du Big Data. Qu'est-ce que HadoopHadoop ?

Explorez l'application de Java dans le domaine du big data : compréhension de Hadoop, Spark, Kafka et d'autres piles technologiques Explorez l'application de Java dans le domaine du big data : compréhension de Hadoop, Spark, Kafka et d'autres piles technologiques Dec 26, 2023 pm 02:57 PM

Pile technologique Java Big Data : Comprendre l'application de Java dans le domaine du Big Data, comme Hadoop, Spark, Kafka, etc. Alors que la quantité de données continue d'augmenter, la technologie Big Data est devenue un sujet brûlant à l'ère d'Internet d'aujourd'hui. Dans le domaine du big data, on entend souvent les noms de Hadoop, Spark, Kafka et d’autres technologies. Ces technologies jouent un rôle essentiel et Java, en tant que langage de programmation largement utilisé, joue également un rôle majeur dans le domaine du Big Data. Cet article se concentrera sur l'application de Java en général

Existe-t-il un avenir pour l'emploi en pharmacie clinique à l'Université médicale de Harbin ? (Quelles sont les perspectives d'emploi pour la pharmacie clinique à l'Université médicale de Harbin ?) Existe-t-il un avenir pour l'emploi en pharmacie clinique à l'Université médicale de Harbin ? (Quelles sont les perspectives d'emploi pour la pharmacie clinique à l'Université médicale de Harbin ?) Jan 02, 2024 pm 08:54 PM

Quelles sont les perspectives d'emploi de la pharmacie clinique à l'Université médicale de Harbin ? Bien que la situation nationale de l'emploi ne soit pas optimiste, les diplômés en pharmacie ont toujours de bonnes perspectives d'emploi. Dans l'ensemble, l'offre de diplômés en pharmacie est inférieure à la demande. Les sociétés pharmaceutiques et les usines pharmaceutiques sont les principaux canaux d'absorption de ces diplômés. La demande de talents dans l'industrie pharmaceutique augmente également de manière constante. Selon les rapports, ces dernières années, le rapport offre-demande pour les étudiants diplômés dans des domaines tels que les préparations pharmaceutiques et la chimie médicinale naturelle a même atteint 1:10. Direction d'emploi de la majeure en pharmacie clinique : Après l'obtention de leur diplôme, les étudiants se spécialisant en médecine clinique peuvent s'engager dans le traitement médical, la prévention, la recherche médicale, etc. dans les unités médicales et sanitaires, la recherche médicale et d'autres départements. Postes d'emploi : Représentant médical, représentant commercial pharmaceutique, représentant commercial, directeur commercial, directeur régional des ventes, responsable des investissements, chef de produit, spécialiste produit, infirmière

Comment installer Hadoop sous Linux Comment installer Hadoop sous Linux May 18, 2023 pm 08:19 PM

1 : Installez JDK1. Exécutez la commande suivante pour télécharger le package d'installation de JDK1.8. wget--no-check-certificatehttps://repo.huaweicloud.com/java/jdk/8u151-b12/jdk-8u151-linux-x64.tar.gz2 Exécutez la commande suivante pour décompresser le package d'installation JDK1.8 téléchargé. . tar-zxvfjdk-8u151-linux-x64.tar.gz3 Déplacez et renommez le package JDK. mvjdk1.8.0_151//usr/java84. Configurez les variables d'environnement Java. écho'

Utiliser PHP pour réaliser des traitements de données à grande échelle : Hadoop, Spark, Flink, etc. Utiliser PHP pour réaliser des traitements de données à grande échelle : Hadoop, Spark, Flink, etc. May 11, 2023 pm 04:13 PM

Alors que la quantité de données continue d’augmenter, le traitement des données à grande échelle est devenu un problème auquel les entreprises doivent faire face et résoudre. Les bases de données relationnelles traditionnelles ne peuvent plus répondre à cette demande pour le stockage et l'analyse de données à grande échelle, les plateformes informatiques distribuées telles que Hadoop, Spark et Flink sont devenues les meilleurs choix. Dans le processus de sélection des outils de traitement de données, PHP devient de plus en plus populaire parmi les développeurs en tant que langage facile à développer et à maintenir. Dans cet article, nous explorerons comment exploiter PHP pour le traitement de données à grande échelle et comment

See all articles