MySQL Cluster写入效率测试
MySQL Cluster使用到目前为止遇到渴望得到答案的问题,也是直接影响使用的问题就是MySQL Cluster的写入效率问题和Cluster是否适合大数据存储、如何配置存储的问题。 在之前的测试中MySQL Cluster的写入效率一直不佳,这也是直接影响能否使用MySQL Cluster的
MySQL Cluster使用到目前为止遇到渴望得到答案的问题,也是直接影响使用的问题就是MySQL Cluster的写入效率问题和Cluster是否适合大数据存储、如何配置存储的问题。
在之前的测试中MySQL Cluster的写入效率一直不佳,这也是直接影响能否使用MySQL Cluster的关键。现在我们来仔细测试一下。使用的环境略有变化。
Data节点的内存扩展为4G。
集群配置如下:
[ndbd default] # Options affecting ndbd processes on all data nodes: NoOfReplicas=2 # Number of replicas DataMemory=2000M # How much memory to allocate for data storage IndexMemory=300M # How much memory to allocate for index storage # For DataMemory and IndexMemory, we have used the # default values. Since the "world" database takes up # only about 500KB, this should be more than enough for # this example Cluster setup. MaxNoOfConcurrentOperations=1200000 MaxNoOfLocalOperations=1320000
测试代码如下:
/** * 向数据库中插入数据 * * @param conn * @param totalRowCount * @param perRowCount * @param tableName * @author lihzh(OneCoder) * @throws SQLException * @date 2013 -1 -17 下午1:57:10 */ private void insertDataToTable(Connection conn, String tableName, long totalRowCount, long perRowCount, long startIndex) throws SQLException { conn.setAutoCommit( false); String sql = "insert into " + tableName + " VALUES(?,?,?)"; System. out.println( "Begin to prepare statement."); PreparedStatement statement = conn.prepareStatement(sql); long sum = 0L; for ( int j = 0; j <p> 分下列情景进行写入测试。</p> <p> 数据加载、写入在内存中时,在独立的新库、新表中一次写入100,1000,10000,50000条记录,分别记录其耗时情况。(5次平均)</p> <pre class="brush:php;toolbar:false"> 100:260ms 1000:1940ms 10000:17683ms(12000-17000) 50000: 93308、94730、90162、94849、162848
与普通单点MySQL写入效率进行对比(2G内存)
100:182ms 1000:1624ms 10000:14946ms 50000:84438ms
双线程并发写入测试
由于只有两个SQL节点,所以这里只采用双线程写入的方法进行测试。代码上采用了简单的硬编码
/** * 多线程并行写入测试 * * @author lihzh(OneCoder) * @blog http://www.coderli.com * @date 2013 -2 -27 下午3:39:56 */ private void parallelInsert() { final long start = System. currentTimeMillis(); Thread t1 = new Thread( new Runnable() { @Override public void run() { try { Connection conn = getConnection(DB_IPADDRESS, DB_PORT, DB_NAME, DB_USER, DB_PASSOWRD); MySQLClusterDataMachine dataMachine = new MySQLClusterDataMachine(); dataMachine.insertDataToTable(conn, TABLE_NAME_DATAHOUSE, 500, 100, 0); long end1 = System.currentTimeMillis(); System. out.println( "Thread 1 cost: " + (end1 - start)); } catch (SQLException e) { e.printStackTrace(); } } }); Thread t2 = new Thread( new Runnable() { @Override public void run() { try { Connection conn = getConnection(DB_IPADDRESS_TWO, DB_PORT, DB_NAME, DB_USER, DB_PASSOWRD); MySQLClusterDataMachine dataMachine = new MySQLClusterDataMachine(); dataMachine.insertDataToTable(conn, TABLE_NAME_DATAHOUSE, 500, 100, 500); long end2 = System.currentTimeMillis(); System. out.println( "Thread 2 cost: " + (end2 - start)); } catch (SQLException e) { e.printStackTrace(); } } }); t1.start(); t2.start(); }
测试结果:
(总条数/每次) | 线程1(总/平均- 各写一半数据) | 线程2 | 并行总耗时 | 单线程单点 |
1000/100 | 985/197 | 1005/201 | 1005/201 | 2264/226 |
10000/1000 | 9223/1836 | 9297/1850 | 9297/1850 | 19405/1940 |
100000/10000 | 121425/12136 | 122081/12201 | 121425/12136 |
148518/14851 |
从结果可以看出,在10000条以下批量写入的情况下,SQL节点的处理能力是集群的瓶颈,双线程双SQL写入相较单线程单节点效率可提升一倍。但是当批量写入数据达到一定数量级,这种效率的提升就不那么明显了,应该是集群中的其他位置也产生了瓶颈。
注:由于各自测试环境的差异,测试数据仅可做内部比较,不可外部横向对比。仅供参考。
写入测试,要做的还很多,不过暂时告一段落。大数据存储和查询测试,随后进行。
原文地址:MySQL Cluster写入效率测试, 感谢原作者分享。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

MySQL est un système de gestion de base de données relationnel open source. 1) Créez une base de données et des tables: utilisez les commandes CreateDatabase et CreateTable. 2) Opérations de base: insérer, mettre à jour, supprimer et sélectionner. 3) Opérations avancées: jointure, sous-requête et traitement des transactions. 4) Compétences de débogage: vérifiez la syntaxe, le type de données et les autorisations. 5) Suggestions d'optimisation: utilisez des index, évitez de sélectionner * et utilisez les transactions.

Vous pouvez ouvrir PHPMYADMIN via les étapes suivantes: 1. Connectez-vous au panneau de configuration du site Web; 2. Trouvez et cliquez sur l'icône PHPMYADMIN; 3. Entrez les informations d'identification MySQL; 4. Cliquez sur "Connexion".

MySQL est un système de gestion de la base de données relationnel open source, principalement utilisé pour stocker et récupérer les données rapidement et de manière fiable. Son principe de travail comprend les demandes des clients, la résolution de requête, l'exécution des requêtes et les résultats de retour. Des exemples d'utilisation comprennent la création de tables, l'insertion et la question des données et les fonctionnalités avancées telles que les opérations de jointure. Les erreurs communes impliquent la syntaxe SQL, les types de données et les autorisations, et les suggestions d'optimisation incluent l'utilisation d'index, les requêtes optimisées et la partition de tables.

MySQL est choisi pour ses performances, sa fiabilité, sa facilité d'utilisation et son soutien communautaire. 1.MySQL fournit des fonctions de stockage et de récupération de données efficaces, prenant en charge plusieurs types de données et opérations de requête avancées. 2. Adoptez l'architecture client-serveur et plusieurs moteurs de stockage pour prendre en charge l'optimisation des transactions et des requêtes. 3. Facile à utiliser, prend en charge une variété de systèmes d'exploitation et de langages de programmation. 4. Avoir un solide soutien communautaire et fournir des ressources et des solutions riches.

Redis utilise une architecture filetée unique pour fournir des performances élevées, une simplicité et une cohérence. Il utilise le multiplexage d'E / S, les boucles d'événements, les E / S non bloquantes et la mémoire partagée pour améliorer la concurrence, mais avec des limites de limitations de concurrence, un point d'échec unique et inadapté aux charges de travail à forte intensité d'écriture.

La position de MySQL dans les bases de données et la programmation est très importante. Il s'agit d'un système de gestion de base de données relationnel open source qui est largement utilisé dans divers scénarios d'application. 1) MySQL fournit des fonctions efficaces de stockage de données, d'organisation et de récupération, en prenant en charge les systèmes Web, mobiles et de niveau d'entreprise. 2) Il utilise une architecture client-serveur, prend en charge plusieurs moteurs de stockage et optimisation d'index. 3) Les usages de base incluent la création de tables et l'insertion de données, et les usages avancés impliquent des jointures multiples et des requêtes complexes. 4) Des questions fréquemment posées telles que les erreurs de syntaxe SQL et les problèmes de performances peuvent être déboguées via la commande Explication et le journal de requête lente. 5) Les méthodes d'optimisation des performances comprennent l'utilisation rationnelle des indices, la requête optimisée et l'utilisation des caches. Les meilleures pratiques incluent l'utilisation des transactions et des acteurs préparés

MySQL et SQL sont des compétences essentielles pour les développeurs. 1.MySQL est un système de gestion de base de données relationnel open source, et SQL est le langage standard utilisé pour gérer et exploiter des bases de données. 2.MySQL prend en charge plusieurs moteurs de stockage via des fonctions de stockage et de récupération de données efficaces, et SQL termine des opérations de données complexes via des instructions simples. 3. Les exemples d'utilisation comprennent les requêtes de base et les requêtes avancées, telles que le filtrage et le tri par condition. 4. Les erreurs courantes incluent les erreurs de syntaxe et les problèmes de performances, qui peuvent être optimisées en vérifiant les instructions SQL et en utilisant des commandes Explication. 5. Les techniques d'optimisation des performances incluent l'utilisation d'index, d'éviter la numérisation complète de la table, d'optimiser les opérations de jointure et d'améliorer la lisibilité du code.

La construction d'une base de données SQL comprend 10 étapes: sélectionner des SGBD; Installation de SGBD; créer une base de données; créer une table; insérer des données; récupération de données; Mise à jour des données; supprimer des données; gérer les utilisateurs; sauvegarde de la base de données.
