MYSQL索引

WBOY
Libérer: 2016-06-07 16:41:37
original
1077 Les gens l'ont consulté

什么是索引? 举个例子:新华字典,有目录,有正文内容。索引就相当于目录,正文内容就相当于数据。 索引有什么用? 索引用于快速查找在某列中有一特定值的行。 一条查询语句,如果没有索引,将对全表进行扫描。 如果所有的数据页面都不在内存中,则需要从硬

什么是索引?

举个例子:新华字典,有目录,有正文内容。索引就相当于目录,正文内容就相当于数据。
Copier après la connexion

索引有什么用?

索引用于快速查找在某列中有一特定值的行。
Copier après la connexion

一条查询语句,如果没有索引,将对全表进行扫描。

如果所有的数据页面都不在内存中,则需要从硬盘上读取这些页面,从而产生大量的I/O,每次I/O都会消耗一定时间。

最终,总的查询时间,会大的惊人。

使用索引

若此时查询列有个索引,MYSQL 就能快速定位到具体位置,找出相关列,将指定数据页面读入内存,I/O 就会大大降低。

以字典为例,查找字母为 Z 开头的某个单词,先通过索引定位 Z 开头的单词的起始位置,从这里开始查询,从而节省了大量的时间。
Copier après la connexion

一次查询能使用多个索引吗?

一次查询只能使用一个索引。
Copier après la connexion

哪些常见情况不能用索引?

 like “%xxx”
 not in , !=
 对列进行函数运算的情况(如 where avg(age) = “20”)
Copier après la connexion

如何分析是否正确用到索引?

explain select ...
Copier après la connexion

联合索引的问题

假设,你有一个三列联合的索引:(col1, col2, col3)。

那么你将拥有三种索引使用方式:

 (col1)
 (col1, col2)
 (col1, col2, col3)
Copier après la connexion

上述说的就是最左前缀 – leftmost prefix。

So,当你有多列查询需求时,你可以考虑建一个合适的联合索引。

关于like查询

like 的参数不以非通配符 % 开头的字符常量,就能使用索引。

SELECT * FROM tbl_name WHERE key_col LIKE 'something%';        //匹配以something开头的字符串
SELECT * FROM tbl_name WHERE key_col LIKE '%something%';       //不使用索引
SELECT * FROM tbl_name WHERE key_col LIKE 'something';         //精确匹配,等效于 “ = ” 运算符
Copier après la connexion

假如,你在看一本成语词典,目录是按成语拼音顺序建立。

查询需求是:你想找以 “一” 字开头的成语(“一%”),和你想找包含一字的成语(“%一%”)。

你觉得哪个会更快呢?

索引越多越好?

大多数情况下,索引都能大幅度提高查询效率。

数据的增、删、改操作都需要维护索引,索引一多,意味着维护成本高了。
更多的索引需要更多的存储空间。比如:20页的书,有15页的目录?这就不合理了。
小表建索引,往往适得其反。比如:读个2页的宣传手册,你还先去找目录?
Copier après la connexion

什么样的字段不适合建索引?

更新非常频繁的列
列的值唯一性太小,比如性别,Enum 类型的字段等
太长的列
FROM:http://blog.segmentfault.com/vboy1010/1190000000461418
Copier après la connexion

Mysql索引设计原则:

任务描述:

假设一高频查询如下
SELECT * FROM user WHERE area=’amoy’ AND sex=0 ORDER BY last_login DESC limit 30;
如何建立索引?描述考虑的过程

user表如下:
初始化100W条数据,其中,area要通过IP查询生成,sex为 0,1 随机

CREATE TABLE?user?(
id?int(10) NOT NULL AUTO_INCREMENT COMMENT ‘自增编号’,
username?varchar(30) NOT NULL DEFAULT ’0′ COMMENT ‘用户名’,
password?varchar(30) NOT NULL DEFAULT ’0′ COMMENT ‘密码’,
area?varchar(30) NOT NULL COMMENT ‘地址’,
sex?int(10) NOT NULL COMMENT ‘性别1,男;2,女。’,
last_login?int(10) NOT NULL COMMENT ‘最近一次登录时间戳’,
PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=892013 DEFAULT CHARSET=latin1

最终我的索引
(last_login,area)

索引原则:

1.where和order by等的字段建立索引

2.使用唯一索引:对于last_login,area等字段重复的次数比较少,可以使用索引;而sex无非就两个值:性别1,男;2,不值得索引

3.多列索引:不要为每一个列单独建立索引,这样并不能将mysql索引的效率最大化。使用“索引合并策略”

4.选择合理的索引列顺序:索引列的顺序意味着索引首先按照最左列进行排序,然后是第二列,以此类推。如(last_login,area)会先按照 last_login 进行排序,然后才是area。

5.将选择性最高的索引放到前面,也就是会所按照这个条件搜索到的数据最少,选择性就越高,比如选择性:last_login> area> sex。

6.索引不是越多越好,适合的索引可以提高查询效率,但是会降低写入效率,根据项目保持两者的平衡性最好了。

总结上面,首先sex不适合建立索引,有没有索引对于效率的提升意义不大,其次索引会按照最左列进行排序,因此将last_login放到最前面

测试过程:

user表
没有任何索引的查询相关日志:
SELECT * FROM user WHERE area=’美国ATT用户’ AND sex=0 ORDER BY last_login DESC limit 30; 0.57s
SELECT * FROM user WHERE area=’泰国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.56s
SELECT * FROM user WHERE area=’台湾省台湾大宽频’ AND sex=0 ORDER BY last_login DESC limit 30; 0.55s
SELECT * FROM user WHERE area=’美国弗吉尼亚州’ AND sex=0 ORDER BY last_login DESC limit 30; 0.59s
SELECT * FROM user WHERE area=’德国奔驰汽车’ AND sex=0 ORDER BY last_login DESC limit 30; 0.55s
SELECT * FROM user WHERE area=’台湾省中华电信’ AND sex=0 ORDER BY last_login DESC limit 30; 0.55s
SELECT * FROM user WHERE area=’韩国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.57s
SELECT * FROM user WHERE area=’拉美地区’ AND sex=0 ORDER BY last_login DESC limit 30; 0.58s
SELECT * FROM user WHERE area=’美国纽约(Prudential)’ AND sex=0 ORDER BY last_login DESC limit 30; 0.57s
SELECT * FROM user WHERE area=’印度尼西亚’ AND sex=0 ORDER BY last_login DESC limit 30; 0.57s
共花费时间:5.66s

建立索引area:
ALTER TABLE?user?ADD INDEX?index_area?(area) ;
SELECT * FROM user WHERE area=’美国ATT用户’ AND sex=0 ORDER BY last_login DESC limit 30; 0.06s
SELECT * FROM user WHERE area=’泰国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.02s
SELECT * FROM user WHERE area=’台湾省台湾大宽频’ AND sex=0 ORDER BY last_login DESC limit 30; 0.00s
SELECT * FROM user WHERE area=’美国弗吉尼亚州’ AND sex=0 ORDER BY last_login DESC limit 30; 0.10s
SELECT * FROM user WHERE area=’德国奔驰汽车’ AND sex=0 ORDER BY last_login DESC limit 30; 0.04s
SELECT * FROM user WHERE area=’台湾省中华电信’ AND sex=0 ORDER BY last_login DESC limit 30; 0.02s
SELECT * FROM user WHERE area=’韩国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.11s
SELECT * FROM user WHERE area=’拉美地区’ AND sex=0 ORDER BY last_login DESC limit 30; 0.20s
SELECT * FROM user WHERE area=’美国纽约(Prudential)’ AND sex=0 ORDER BY last_login DESC limit 30; 0.07s
SELECT * FROM user WHERE area=’印度尼西亚’ AND sex=0 ORDER BY last_login DESC limit 30; 0.04s
共花费时间:0.66s
可见,建立area以后对性能的影响是巨大的(5.66/0.66 约为8.5758倍)
删除索引:ALTER TABLE?user?DROP INDEX?index_area;
删除area索引发现时间又变成了0.57s

建立last_login索引:
SELECT * FROM user WHERE area=’美国ATT用户’ AND sex=0 ORDER BY last_login DESC limit 30; 0.03s
SELECT * FROM user WHERE area=’泰国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.09s
SELECT * FROM user WHERE area=’台湾省台湾大宽频’ AND sex=0 ORDER BY last_login DESC limit 30; 0.51s
SELECT * FROM user WHERE area=’美国弗吉尼亚州’ AND sex=0 ORDER BY last_login DESC limit 30; 0.01s
SELECT * FROM user WHERE area=’德国奔驰汽车’ AND sex=0 ORDER BY last_login DESC limit 30; 0.04s
SELECT * FROM user WHERE area=’台湾省中华电信’ AND sex=0 ORDER BY last_login DESC limit 30; 0.07s
SELECT * FROM user WHERE area=’韩国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.01s
SELECT * FROM user WHERE area=’拉美地区’ AND sex=0 ORDER BY last_login DESC limit 30; 0.01s
SELECT * FROM user WHERE area=’美国纽约(Prudential)’ AND sex=0 ORDER BY last_login DESC limit 30; 0.04s
SELECT * FROM user WHERE area=’印度尼西亚’ AND sex=0 ORDER BY last_login DESC limit 30; 0.06s
共花费时间:0.87s
同样能够提升性能(5.66/0.87 约为6.5057倍)

建立sex索引:
ALTER TABLE?user?ADD INDEX?index_sex?(sex) ;
SELECT * FROM user WHERE area=’美国ATT用户’ AND sex=0 ORDER BY last_login DESC limit 30; 0.87s
SELECT * FROM user WHERE area=’泰国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.87s
SELECT * FROM user WHERE area=’台湾省台湾大宽频’ AND sex=0 ORDER BY last_login DESC limit 30; 0.87s
SELECT * FROM user WHERE area=’美国弗吉尼亚州’ AND sex=0 ORDER BY last_login DESC limit 30; 0.89s
SELECT * FROM user WHERE area=’德国奔驰汽车’ AND sex=0 ORDER BY last_login DESC limit 30; 0.88s
SELECT * FROM user WHERE area=’台湾省中华电信’ AND sex=0 ORDER BY last_login DESC limit 30; 0.87s
SELECT * FROM user WHERE area=’韩国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.86s
SELECT * FROM user WHERE area=’拉美地区’ AND sex=0 ORDER BY last_login DESC limit 30; 0.88s
SELECT * FROM user WHERE area=’美国纽约(Prudential)’ AND sex=0 ORDER BY last_login DESC limit 30; 0.87s
SELECT * FROM user WHERE area=’印度尼西亚’ AND sex=0 ORDER BY last_login DESC limit 30; 0.87s
共花费时间:8.73s
同样能够提升性能(5.66s/8.73 约为0.6483倍)效率反而降低了??求解?
建立这个sex索引还不如不建。

删除索引:
ALTER TABLE?user?DROP INDEX?index_sex;
发现时间又变成了0.57s左右,

建立两个单独的索引:
ALTER TABLE?user
ADD INDEX?index_area?(area) ,
ADD INDEX?index_last_login?(last_login) ;

SELECT * FROM user WHERE area=’美国ATT用户’ AND sex=0 ORDER BY last_login DESC limit 30; 0.09s
SELECT * FROM user WHERE area=’泰国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.33s
SELECT * FROM user WHERE area=’台湾省台湾大宽频’ AND sex=0 ORDER BY last_login DESC limit 30; 0.21s
SELECT * FROM user WHERE area=’美国弗吉尼亚州’ AND sex=0 ORDER BY last_login DESC limit 30; 0.01s
SELECT * FROM user WHERE area=’德国奔驰汽车’ AND sex=0 ORDER BY last_login DESC limit 30; 0.28s
SELECT * FROM user WHERE area=’台湾省中华电信’ AND sex=0 ORDER BY last_login DESC limit 30; 0.02s
SELECT * FROM user WHERE area=’韩国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.02s
SELECT * FROM user WHERE area=’拉美地区’ AND sex=0 ORDER BY last_login DESC limit 30; 0.02s
SELECT * FROM user WHERE area=’美国纽约(Prudential)’ AND sex=0 ORDER BY last_login DESC limit 30; 0.03s
SELECT * FROM user WHERE area=’印度尼西亚’ AND sex=0 ORDER BY last_login DESC limit 30; 0.67s

发现建立两个单独的索引还不如只建立一个索引
删除索引:
发现时间又变成了0.57s左右,

建立一个的联合索引:
ALTER TABLE?user
ADD INDEX?index_last_login_area?(last_login,area) ,
SELECT * FROM user WHERE area=’美国ATT用户’ AND sex=0 ORDER BY last_login DESC limit 30; 0.00s
SELECT * FROM user WHERE area=’泰国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.00s
SELECT * FROM user WHERE area=’台湾省台湾大宽频’ AND sex=0 ORDER BY last_login DESC limit 30; 0.00s
SELECT * FROM user WHERE area=’美国弗吉尼亚州’ AND sex=0 ORDER BY last_login DESC limit 30; 0.00s
SELECT * FROM user WHERE area=’德国奔驰汽车’ AND sex=0 ORDER BY last_login DESC limit 30; 0.00s
SELECT * FROM user WHERE area=’台湾省中华电信’ AND sex=0 ORDER BY last_login DESC limit 30; 0.00s
SELECT * FROM user WHERE area=’韩国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.00s
SELECT * FROM user WHERE area=’拉美地区’ AND sex=0 ORDER BY last_login DESC limit 30; 0.00s
SELECT * FROM user WHERE area=’美国纽约(Prudential)’ AND sex=0 ORDER BY last_login DESC limit 30; 0.00s
SELECT * FROM user WHERE area=’印度尼西亚’ AND sex=0 ORDER BY last_login DESC limit 30; 0.00s
额,第二条数据这是怎么了,我测试了5次都在这附近晃悠哈!
这尼玛,找对索引啦!就该这么建立,查询不出来需要的时间啦!估计就是我们需要的索引啦!!!!

删除索引:
发现时间又变成了0.57s左右,

建立一个的联合索引:
ALTER TABLE?user
ADD INDEX?index_sex_last_login_area?(sex,last_login,area)
SELECT * FROM user WHERE area=’美国ATT用户’ AND sex=0 ORDER BY last_login DESC limit 30; 0.18s
SELECT * FROM user WHERE area=’泰国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.17s
SELECT * FROM user WHERE area=’台湾省台湾大宽频’ AND sex=0 ORDER BY last_login DESC limit 30; 0.81s
SELECT * FROM user WHERE area=’美国弗吉尼亚州’ AND sex=0 ORDER BY last_login DESC limit 30; 0.01s
SELECT * FROM user WHERE area=’德国奔驰汽车’ AND sex=0 ORDER BY last_login DESC limit 30; 0.02s
SELECT * FROM user WHERE area=’台湾省中华电信’ AND sex=0 ORDER BY last_login DESC limit 30; 0.04s
SELECT * FROM user WHERE area=’韩国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.01s
SELECT * FROM user WHERE area=’拉美地区’ AND sex=0 ORDER BY last_login DESC limit 30; 0.01s
SELECT * FROM user WHERE area=’美国纽约(Prudential)’ AND sex=0 ORDER BY last_login DESC limit 30; 0.03s
SELECT * FROM user WHERE area=’印度尼西亚’ AND sex=0 ORDER BY last_login DESC limit 30; 0.04s
sex怎么总是你在拖后腿啊!把你调整到索引的最后一个吧!
删除索引:
发现时间又变成了0.57s左右,

建立一个的联合索引:
ALTER TABLE?user
ADD INDEX?index_last_login_area_sex?(area,last_login,sex)
SELECT * FROM user WHERE area=’美国ATT用户’ AND sex=0 ORDER BY last_login DESC limit 30; 0.03s
SELECT * FROM user WHERE area=’泰国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.07s
SELECT * FROM user WHERE area=’台湾省台湾大宽频’ AND sex=0 ORDER BY last_login DESC limit 30; 0.50s
SELECT * FROM user WHERE area=’美国弗吉尼亚州’ AND sex=0 ORDER BY last_login DESC limit 30; 0.02s
SELECT * FROM user WHERE area=’德国奔驰汽车’ AND sex=0 ORDER BY last_login DESC limit 30; 0.05s
SELECT * FROM user WHERE area=’台湾省中华电信’ AND sex=0 ORDER BY last_login DESC limit 30; 0.06s
SELECT * FROM user WHERE area=’韩国’ AND sex=0 ORDER BY last_login DESC limit 30; 0.02s
SELECT * FROM user WHERE area=’拉美地区’ AND sex=0 ORDER BY last_login DESC limit 30; 0.02s
SELECT * FROM user WHERE area=’美国纽约(Prudential)’ AND sex=0 ORDER BY last_login DESC limit 30; 0.04s
SELECT * FROM user WHERE area=’印度尼西亚’ AND sex=0 ORDER BY last_login DESC limit 30; 0.06s

综上所述:1.建立索引不一定能够加快查询效率如sex这种给重复次数特别多的列增加索引如sex这种会降低查询效率,具体的原因有待查找
2.给重复次数比较少的列增加u讴吟还是能够大幅度提高效率
3.给where和orderby之后的字段添加索引才会加快查询效率
4.为每一个列单独建立索引,不能将索引的效率最大化,应该使用索引合并策略,即根据查询条件,建立联合索引
5.联合索引的顺序问题:将选择性高的索引放到前面
6.根据资料建立索引意味着索引按照最左列进行排序,然后事第二列,以此类推。如(last_login ,area)就会按照last_login进行排序,然后才是area
7.根据这次的这个查询条件来说最好的索引是:ALTER TABLE?userADD INDEX?index_last_login_area(last_login,area)。

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal