MySQL大量数据插入各种方法性能分析与比较
不管是日常业务数据处理中,还是数据库的导入导出,都可能遇到需要处理大量数据的插入。插入的方式和数据库引擎都会对插入速度造成影响,这篇文章旨在从理论和实践上对各种方法进行分析和比较,方便以后应用中插入方法的选择。 插入分析 MySQL中插入一个记录
不管是日常业务数据处理中,还是数据库的导入导出,都可能遇到需要处理大量数据的插入。插入的方式和数据库引擎都会对插入速度造成影响,这篇文章旨在从理论和实践上对各种方法进行分析和比较,方便以后应用中插入方法的选择。
插入分析
MySQL中插入一个记录需要的时间由下列因素组成,其中的数字表示大约比例:
- 连接:(3)
- 发送查询给服务器:(2)
- 分析查询:(2)
- 插入记录:(1x记录大小)
- 插入索引:(1x索引)
- 关闭:(1)
如果我们每插入一条都执行一个SQL语句,那么我们需要执行除了连接和关闭之外的所有步骤N次,这样是非常耗时的,优化的方式有一下几种:
- 在每个insert语句中写入多行,批量插入
- 将所有查询语句写入事务中
- 利用Load Data导入数据
每种方式执行的性能如下。
Innodb引擎
InnoDB 给 MySQL 提供了具有事务(commit)、回滚(rollback)和崩溃修复能力(crash recovery capabilities)的事务安全(transaction-safe (ACID compliant))型表。InnoDB 提供了行锁(locking on row level)以及外键约束(FOREIGN KEY constraints)。
InnoDB 的设计目标是处理大容量数据库系统,它的 CPU 利用率是其它基于磁盘的关系数据库引擎所不能比的。在技术上,InnoDB 是一套放在 MySQL 后台的完整数据库系统,InnoDB 在主内存中建立其专用的缓冲池用于高速缓冲数据和索引。
测试环境
Macbook Air 12mid apache2.2.26 php5.5.10 mysql5.6.16
总数100W条数据
插入完后数据库大小38.6MB(无索引),46.8(有索引)
- 无索引单条插入 总耗时:229s 峰值内存:246KB
- 有索引单条插入 总耗时:242s 峰值内存:246KB
- 无索引批量插入 总耗时:10s 峰值内存:8643KB
- 有索引批量插入 总耗时:16s 峰值内存:8643KB
- 无索引事务插入 总耗时:78s 峰值内存:246KB
- 有索引事务插入 总耗时:82s 峰值内存:246KB
- 无索引Load Data插入 总耗时:12s 峰值内存:246KB
- 有索引Load Data插入 总耗时:11s 峰值内存:246KB
MyIASM引擎
MyISAM 是MySQL缺省存贮引擎。设计简单,支持全文搜索。
测试环境
Macbook Air 12mid apache2.2.26 php5.5.10 mysql5.6.16
总数100W条数据
插入完后数据库大小19.1MB(无索引),38.6(有索引)
- 无索引单条插入 总耗时:82s 峰值内存:246KB
- 有索引单条插入 总耗时:86s 峰值内存:246KB
- 无索引批量插入 总耗时:3s 峰值内存:8643KB
- 有索引批量插入 总耗时:7s 峰值内存:8643KB
- 无索引Load Data插入 总耗时:6s 峰值内存:246KB
- 有索引Load Data插入 总耗时:8s 峰值内存:246KB
总结
我测试的数据量不是很大,不过可以大概了解这几种插入方式对于速度的影响,最快的必然是Load Data方式。这种方式相对比较麻烦,因为涉及到了写文件,但是可以兼顾内存和速度。
测试代码
<?php $dsn = 'mysql:host=localhost;dbname=test'; $db = new PDO($dsn,'root','',array(PDO::ATTR_PERSISTENT => true)); //删除上次的插入数据 $db->query('delete from `test`'); //开始计时 $start_time = time(); $sum = 1000000; // 测试选项 $num = 1; if ($num == 1){ // 单条插入 for($i = 0; $i < $sum; $i++){ $db->query("insert into `test` (`id`,`name`) values ($i,'tsetssdf')"); } } elseif ($num == 2) { // 批量插入,为了不超过max_allowed_packet,选择每10万插入一次 for ($i = 0; $i < $sum; $i++) { if ($i == $sum - 1) { //最后一次 if ($i%100000 == 0){ $values = "($i, 'testtest')"; $db->query("insert into `test` (`id`, `name`) values $values"); } else { $values .= ",($i, 'testtest')"; $db->query("insert into `test` (`id`, `name`) values $values"); } break; } if ($i%100000 == 0) { //平常只有在这个情况下才插入 if ($i == 0){ $values = "($i, 'testtest')"; } else { $db->query("insert into `test` (`id`, `name`) values $values"); $values = "($i, 'testtest')"; } } else { $values .= ",($i, 'testtest')"; } } } elseif ($num == 3) { // 事务插入 $db->beginTransaction(); for($i = 0; $i < $sum; $i++){ $db->query("insert into `test` (`id`,`name`) values ($i,'tsetssdf')"); } $db->commit(); } elseif ($num == 4) { // 文件load data $filename = dirname(__FILE__).'/test.sql'; $fp = fopen($filename, 'w'); for($i = 0; $i < $sum; $i++){ fputs($fp, "$i,'testtest'\r\n"); } $db->exec("load data infile '$filename' into table test fields terminated by ','"); } $end_time = time(); echo "总耗时", ($end_time - $start_time), "秒\n"; echo "峰值内存", round(memory_get_peak_usage()/1000), "KB\n"; ?>
参考
- MySQL: InnoDB 还是 MyISAM?
- mysql存储引擎:InnoDB和MyISAM的区别与优劣
- MySQL大数据量快速插入方法和语句优化
原文地址:MySQL大量数据插入各种方法性能分析与比较, 感谢原作者分享。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Les performances des requêtes MySQL peuvent être optimisées en créant des index qui réduisent le temps de recherche d'une complexité linéaire à une complexité logarithmique. Utilisez PreparedStatements pour empêcher l’injection SQL et améliorer les performances des requêtes. Limitez les résultats des requêtes et réduisez la quantité de données traitées par le serveur. Optimisez les requêtes de jointure, notamment en utilisant des types de jointure appropriés, en créant des index et en envisageant l'utilisation de sous-requêtes. Analyser les requêtes pour identifier les goulots d'étranglement ; utiliser la mise en cache pour réduire la charge de la base de données ; optimiser le code PHP afin de minimiser les frais généraux.

L'un des changements majeurs introduits dans MySQL 8.4 (la dernière version LTS en 2024) est que le plugin « MySQL Native Password » n'est plus activé par défaut. De plus, MySQL 9.0 supprime complètement ce plugin. Ce changement affecte PHP et d'autres applications

Comparaison des performances de différents frameworks Java : Traitement des requêtes API REST : Vert.x est le meilleur, avec un taux de requêtes de 2 fois SpringBoot et 3 fois Dropwizard. Requête de base de données : HibernateORM de SpringBoot est meilleur que l'ORM de Vert.x et Dropwizard. Opérations de mise en cache : le client Hazelcast de Vert.x est supérieur aux mécanismes de mise en cache de SpringBoot et Dropwizard. Cadre approprié : choisissez en fonction des exigences de l'application. Vert.x convient aux services Web hautes performances, SpringBoot convient aux applications gourmandes en données et Dropwizard convient à l'architecture de microservices.

La création d'une table MySQL à l'aide de PHP nécessite les étapes suivantes : Connectez-vous à la base de données. Créez la base de données si elle n'existe pas. Sélectionnez une base de données. Créer un tableau. Exécutez la requête. Fermez la connexion.

Modèle 70B, 1000 tokens peuvent être générés en quelques secondes, ce qui se traduit par près de 4000 caractères ! Les chercheurs ont affiné Llama3 et introduit un algorithme d'accélération. Par rapport à la version native, la vitesse est 13 fois plus rapide ! Non seulement il est rapide, mais ses performances sur les tâches de réécriture de code dépassent même GPT-4o. Cette réalisation vient d'anysphere, l'équipe derrière le populaire artefact de programmation d'IA Cursor, et OpenAI a également participé à l'investissement. Il faut savoir que sur Groq, un framework d'accélération d'inférence rapide bien connu, la vitesse d'inférence de 70BLlama3 n'est que de plus de 300 jetons par seconde. Avec la vitesse de Cursor, on peut dire qu'il permet une édition complète et quasi instantanée des fichiers de code. Certaines personnes l'appellent un bon gars, si tu mets Curs

" sept péchés capitaux" » Dissiper les rumeurs : selon des informations divulguées et des documents obtenus par Vox, la haute direction d'OpenAI, y compris Altman, était bien au courant de ces dispositions de récupération de capitaux propres et les a approuvées. De plus, OpenAI est confronté à un problème grave et urgent : la sécurité de l’IA. Les récents départs de cinq employés liés à la sécurité, dont deux de ses employés les plus en vue, et la dissolution de l'équipe « Super Alignment » ont une nouvelle fois mis les enjeux de sécurité d'OpenAI sur le devant de la scène. Le magazine Fortune a rapporté qu'OpenA

Les techniques efficaces pour optimiser les performances multithread C++ incluent la limitation du nombre de threads pour éviter les conflits de ressources. Utilisez des verrous mutex légers pour réduire les conflits. Optimisez la portée du verrou et minimisez le temps d’attente. Utilisez des structures de données sans verrouillage pour améliorer la simultanéité. Évitez les attentes occupées et informez les threads de la disponibilité des ressources via des événements.

Selon les informations du 26 juin, lors de la cérémonie d'ouverture de la Conférence mondiale des communications mobiles 2024 de Shanghai (MWC Shanghai), le président de China Mobile, Yang Jie, a prononcé un discours. Il a déclaré qu'actuellement, la société humaine entre dans la quatrième révolution industrielle, dominée par l'information et profondément intégrée à l'information et à l'énergie, c'est-à-dire la « révolution de l'intelligence numérique », et la formation de nouvelles forces productives s'accélère. Yang Jie estime que de la « révolution de la mécanisation » entraînée par les machines à vapeur, à la « révolution de l'électrification » entraînée par l'électricité et les moteurs à combustion interne, en passant par la « révolution de l'information » entraînée par les ordinateurs et Internet, chaque cycle de révolution industrielle est basé sur « L'information et « l'énergie » constituent l'axe principal, apportant le développement de la productivité
