在优化SQL语句中使用虚拟索引
是在不损耗主机CPU,IO,磁盘空间去实际创建索引的情况下,来判断一个索引是否能够对SQL优化起到作用。列如我们在优化一条SQL语句的
定义:虚拟索引(virtual index) 是指没有创建对应的物理段的索引。
虚拟索引的目的:是在不损耗主机CPU,IO,磁盘空间去实际创建索引的情况下,来判断一个索引是否能够对SQL优化起到作用。列如我们在优化一条SQL语句的时候,通常会查看需要优化的语句的执行计划,在考虑是否需要在表的某列上建立索引时就可以用到虚拟索引。虚拟索引建立的时候因为其没有消耗主机的相关资源,因此可以在相当快的时间内建立完成。
下面我们来看一下试验:
首先建立两张测试表
create table bigtab as select rownum as id,a.* from sys.all_objects a;
create table smalltab as select rownum as id,a.* from sys.all_tables a;
多次运行以下语句,,以插入多一些测试数据:
insert into bigtab select ronum as id,a.* from sys.all_objects a;
insert into smalltab select rownum as id,a.* from sys.all_tables a;
查看需要执行语句的执行计划:
SQL> explain plan for select count(*) from bigtab a,smalltab b where a.object_name=b.table_name;
Explained.
SQL> select * from table(dbms_xplan.display());
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 3089226980
--------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 40 | 518 (1)| 00:00:07 |
| 1 | SORT AGGREGATE | | 1 | 40 | | |
|* 2 | HASH JOIN | | 99838 | 3899K| 518 (1)| 00:00:07 |
| 3 | TABLE ACCESS FULL| SMALLTAB | 15311 | 299K| 172 (0)| 00:00:03 |
| 4 | TABLE ACCESS FULL| BIGTAB | 85284 | 1665K| 345 (1)| 00:00:05 |
--------------------------------------------------------------------------------
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("A"."OBJECT_NAME"="B"."TABLE_NAME")
16 rows selected.
下面我们在两个表上创建两个虚拟索引,分别在object_name和table_name列上,看看优化器是否会使用这两个索引,以及优化器的成本会如何变化。
SQL> show parameter _use_nosegment
SQL> alter session set "_use_nosegment_indexes"=true;
Session altered.
SQL> show parameter _use_nosegment
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
_use_nosegment_indexes boolean TRUE
SQL> create index big_ind on bigtab(object_name) nosegment;
Index created.
SQL> create index small_ind on smalltab(table_name) nosegment;

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

L'article discute de l'utilisation de l'instruction ALTER TABLE de MySQL pour modifier les tables, notamment en ajoutant / abandon les colonnes, en renommant des tables / colonnes et en modifiant les types de données de colonne.

L'article discute de la configuration du cryptage SSL / TLS pour MySQL, y compris la génération et la vérification de certificat. Le problème principal est d'utiliser les implications de sécurité des certificats auto-signés. [Compte de caractère: 159]

L'article traite des stratégies pour gérer de grands ensembles de données dans MySQL, y compris le partitionnement, la rupture, l'indexation et l'optimisation des requêtes.

L'article traite des outils de GUI MySQL populaires comme MySQL Workbench et PhpMyAdmin, en comparant leurs fonctionnalités et leur pertinence pour les débutants et les utilisateurs avancés. [159 caractères]

L'article discute de la suppression des tables dans MySQL en utilisant l'instruction TABLE DROP, mettant l'accent sur les précautions et les risques. Il souligne que l'action est irréversible sans sauvegardes, détaillant les méthodes de récupération et les risques potentiels de l'environnement de production.

L'article discute de l'utilisation de clés étrangères pour représenter les relations dans les bases de données, en se concentrant sur les meilleures pratiques, l'intégrité des données et les pièges communs à éviter.

L'article discute de la création d'index sur les colonnes JSON dans diverses bases de données comme PostgreSQL, MySQL et MongoDB pour améliorer les performances de la requête. Il explique la syntaxe et les avantages de l'indexation des chemins JSON spécifiques et répertorie les systèmes de base de données pris en charge.

L'article discute de la sécurisation MySQL contre l'injection SQL et les attaques brutales à l'aide de déclarations préparées, de validation des entrées et de politiques de mot de passe solides (159 caractères)
