Oracle 不使用索引的原因有哪些?
今天开始总结一下oracle不使用索引的原因有哪些。一边学习一边做笔记。聚簇因子是衡量索引列数据顺序与表字段数据顺序相似性的一
今天开始总结一下Oracle不使用索引的原因有哪些。一边学习一边做笔记。
第一种:行数存在差异。
在视图user_tables存在一个num_rows字段,该字段是记录在统计信息收集后所对应对象的行数,在user_tab_columns视图中存在一个num_distinct字段,该字段记录每个字段内不同数值的个数。oracle认为当num_distinct越接近num_rows的时候索引的选择性越好,那么在执行查询的时候越容易使用索引。
第二种:聚簇因子:
什么是聚簇因子?
聚簇因子是衡量索引列数据顺序与表字段数据顺序相似性的一个值。我们都知道在创建的表中一般都是堆表,也就是数据在表中存储是无续的,那么为了更加快速的访问数据,我们通常使用索引进行数据访问,这时候没个索引都有一个聚簇因子,聚簇因子越接近对象的块数,那么选择性越好,越接近表的行数那么选择性越差。
之前听到有个朋友曾经提到这么一个问题“为什么我在测试环境查询一个数据很快和在生产环境查询数据怎么这么慢呢?表结构都一样的,数据也是一样的。”。那么不妨看看聚簇因子是多少。
聚簇因子的查看是从user_ind_statistics视图中: CLUSTERING_FACTOR 表示的。看一下官方介绍:
Indicates the amount of order of the rows in the table based on the values of the index.
If the value is near the number of blocks, then the table is very well ordered. In this case, the index entries in a single leaf block tend to point to rows in the same data blocks.
If the value is near the number of rows, then the table is very randomly ordered. In this case, it is unlikely that index entries in the same leaf block point to rows in the same data blocks.
往往聚簇因子的大小和数据获取的I/o存在一定的相似性。如果聚簇因子大,那么相对的物理或是逻辑(一般是)i/o开销很大,也就是块被频繁反复读取,一致数据获取很慢。
长查询的视图有dba_ind_statistics和dba_tab_statistics
第三种:使用不等条件:
当使用在进行查询数据的时候使用不等条件,,那么oracle任务这个符号会需要读取大部分的数据块,那么就会跳过使用索引。eg:
SQL> select index_name,table_name,column_name from user_ind_columns where table_name='EMP';
INDEX_NAME TABLE_NAME COLUMN_NAME
------------------------------ ------------------------------ ----------------------------------------
EMP_IDX1 EMP DEPTNO
EMP_IDX1 EMP EMPNO
SQL> select * from emp;
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
---------- ---------- --------- ---------- --------- ---------- ---------- ----------
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7839 KING PRESIDENT 17-NOV-81 5000 10
7934 MILLER CLERK 7782 23-JAN-82 1300 10
7369 SMITH CLERK 7902 17-DEC-80 800 20
7566 JONES MANAGER 7839 02-APR-81 2975 20
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7902 FORD ANALYST 7566 03-DEC-81 3000 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7900 JAMES CLERK 7698 03-DEC-81 950 30
14 rows selected.
SQL> set autotrace trace exp
SQL> select * from emp where empno7900;
Execution Plan
----------------------------------------------------------
Plan hash value: 822536733

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

L'article discute de l'utilisation de l'instruction ALTER TABLE de MySQL pour modifier les tables, notamment en ajoutant / abandon les colonnes, en renommant des tables / colonnes et en modifiant les types de données de colonne.

Les capacités de recherche en texte intégral d'InNODB sont très puissantes, ce qui peut considérablement améliorer l'efficacité de la requête de la base de données et la capacité de traiter de grandes quantités de données de texte. 1) INNODB implémente la recherche de texte intégral via l'indexation inversée, prenant en charge les requêtes de recherche de base et avancées. 2) Utilisez la correspondance et contre les mots clés pour rechercher, prendre en charge le mode booléen et la recherche de phrases. 3) Les méthodes d'optimisation incluent l'utilisation de la technologie de segmentation des mots, la reconstruction périodique des index et l'ajustement de la taille du cache pour améliorer les performances et la précision.

L'article discute de la configuration du cryptage SSL / TLS pour MySQL, y compris la génération et la vérification de certificat. Le problème principal est d'utiliser les implications de sécurité des certificats auto-signés. [Compte de caractère: 159]

L'article traite des outils de GUI MySQL populaires comme MySQL Workbench et PhpMyAdmin, en comparant leurs fonctionnalités et leur pertinence pour les débutants et les utilisateurs avancés. [159 caractères]

L'article traite des stratégies pour gérer de grands ensembles de données dans MySQL, y compris le partitionnement, la rupture, l'indexation et l'optimisation des requêtes.

L'article discute de la suppression des tables dans MySQL en utilisant l'instruction TABLE DROP, mettant l'accent sur les précautions et les risques. Il souligne que l'action est irréversible sans sauvegardes, détaillant les méthodes de récupération et les risques potentiels de l'environnement de production.

L'article discute de la création d'index sur les colonnes JSON dans diverses bases de données comme PostgreSQL, MySQL et MongoDB pour améliorer les performances de la requête. Il explique la syntaxe et les avantages de l'indexation des chemins JSON spécifiques et répertorie les systèmes de base de données pris en charge.

MySQL prend en charge quatre types d'index: B-Tree, hachage, texte intégral et spatial. 1. L'indice de tree B est adapté à la recherche de valeur égale, à la requête de plage et au tri. 2. L'indice de hachage convient aux recherches de valeur égale, mais ne prend pas en charge la requête et le tri des plages. 3. L'index de texte complet est utilisé pour la recherche en texte intégral et convient pour le traitement de grandes quantités de données de texte. 4. L'indice spatial est utilisé pour la requête de données géospatiaux et convient aux applications SIG.
