巧用临时表将大结果集转换为小结果集驱动查询
sql如下SELECTDISTINCTo.orders_id,o.oa_order_id,os.orders_status_name,o.order_type,o.date_purchasedASadd_date,dop.resource,dop.country_codeFROMdm_order
sql如下
SELECT DISTINCT o.orders_id, o.oa_order_id,os.orders_status_name, o.order_type, o.date_purchased AS add_date,dop.resource, dop.country_code FROM dm_order_products AS dop LEFT JOIN orders AS o ON o.orders_id=dop.orders_id LEFT JOIN orders_total AS ot ON ot.orders_id=o.orders_id AND ot.class='ot_total' LEFT JOIN orders_status AS os ON os.orders_status_id=o.orders_status WHERE o.date_purchased >= '2014-01-31 10:00:00' AND o.date_purchased 因为需要在大结果集中order by 去重,再显示20条.表特性是orders(o)表对dm_order_products(dop)表为一对多关系,而取出来的dop.country_code为一个订单号对应唯一值,由于表结构设计问题,每次查询该country_code都需要去dop查询。所以,每次查询都放大结果集,,然后再去重,得到所要的结果集合。
explain
+----+-------------+-------+-------+----------------------------------+----------------------------+---------+-------------------------------+-------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+----------------------------------+----------------------------+---------+-------------------------------+-------+----------------------------------------------+ | 1 | SIMPLE | o | range | PRIMARY,date_purchased | date_purchased | 9 | NULL | 952922 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | ot | ref | idx_orders_total_orders_id,class | idx_orders_total_orders_id | 4 | banggood_work.o.orders_id | 3 | | | 1 | SIMPLE | os | ref | PRIMARY | PRIMARY | 4 | banggood_work.o.orders_status | 1 | | | 1 | SIMPLE | dop | ref | orders_id | orders_id | 4 | banggood_work.o.orders_id | 2 | | +----+-------------+-------+-------+----------------------------------+----------------------------+---------+-------------------------------+-------+----------------------------------------------+索引情况使用正常,但是发现需要扫描一个大结果集.
profiling,执行时间为将近20s
mysql> show profile cpu,block io for query 1; +--------------------------------+-----------+----------+------------+--------------+---------------+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +--------------------------------+-----------+----------+------------+--------------+---------------+ | starting | 0.000025 | 0.000000 | 0.000000 | 0 | 0 | | Waiting for query cache lock | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | checking query cache for query | 0.000080 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000034 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | Waiting for query cache lock | 0.000024 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000046 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000018 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000193 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000054 | 0.000000 | 0.000000 | 0 | 0 | | Creating tmp table | 0.000031 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | Copying to tmp table | 12.491533 | 3.039538 | 3.107527 | 11896 | 824 | | Sorting result | 0.030709 | 0.034995 | 0.004000 | 16 | 496 | | Sending data | 0.000048 | 0.000000 | 0.000000 | 0 | 0 | | end | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | removing tmp table | 0.010108 | 0.000000 | 0.010998 | 8 | 32 | | end | 0.000013 | 0.000000 | 0.000000 | 0 | 0 | | query end | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | closing tables | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.000338 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000033 | 0.000000 | 0.000000 | 0 | 8 | | cleaning up | 0.000006 | 0.000000 | 0.000000 | 0 | 0 |可以看到Copying to tmp table 占了大部分的cpu时间和io,最后sorting result占比重不大。
我们可以上面描述的结合特性,是否能够去掉Copying to tmp table 选项!因为是根据orders_id排序,取出最新的20条数据,如果我们在orders表中先把20条数据取出来,再和对应的表连接,这样一来,就将整个大结果Copying to tmp table 再排序这一步去掉!
看sql语句如下
SELECT DISTINCT o.orders_id, o.oa_order_id,os.orders_status_name, o.order_type, o.date_purchased AS add_date,dop.resource, dop.country_code FROM ( SELECT * FROM orders AS o WHERE o.date_purchased >= '2014-01-31 10:00:00' AND o.date_purchased | ALL | NULL | NULL | NULL | NULL | 20 | Using temporary; Using filesort | | 1 | PRIMARY | dop | ref | orders_id | orders_id | 4 | o.orders_id | 2 | | | 1 | PRIMARY | ot | ref | idx_orders_total_orders_id,class | idx_orders_total_orders_id | 4 | o.orders_id | 3 | | | 1 | PRIMARY | os | ref | PRIMARY | PRIMARY | 4 | o.orders_status | 1 | | | 2 | DERIVED | o | index | date_purchased | PRIMARY | 4 | NULL | 330 | Using where | +----+-------------+------------+-------+----------------------------------+----------------------------+---------+-----------------+------+---------------------------------+
Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Dans la base de données MySQL, la relation entre l'utilisateur et la base de données est définie par les autorisations et les tables. L'utilisateur a un nom d'utilisateur et un mot de passe pour accéder à la base de données. Les autorisations sont accordées par la commande Grant, tandis que le tableau est créé par la commande Create Table. Pour établir une relation entre un utilisateur et une base de données, vous devez créer une base de données, créer un utilisateur, puis accorder des autorisations.

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

Simplification de l'intégration des données: AmazonrDSMysQL et l'intégration Zero ETL de Redshift, l'intégration des données est au cœur d'une organisation basée sur les données. Les processus traditionnels ETL (extrait, converti, charge) sont complexes et prennent du temps, en particulier lors de l'intégration de bases de données (telles que AmazonrDSMysQL) avec des entrepôts de données (tels que Redshift). Cependant, AWS fournit des solutions d'intégration ETL Zero qui ont complètement changé cette situation, fournissant une solution simplifiée et à temps proche pour la migration des données de RDSMySQL à Redshift. Cet article plongera dans l'intégration RDSMYSQL ZERO ETL avec Redshift, expliquant comment il fonctionne et les avantages qu'il apporte aux ingénieurs de données et aux développeurs.

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

Pour remplir le nom d'utilisateur et le mot de passe MySQL: 1. Déterminez le nom d'utilisateur et le mot de passe; 2. Connectez-vous à la base de données; 3. Utilisez le nom d'utilisateur et le mot de passe pour exécuter des requêtes et des commandes.

1. Utilisez l'index correct pour accélérer la récupération des données en réduisant la quantité de données numérisées SELECT * FROMMLOYEESEESHWHERELAST_NAME = 'SMITH'; Si vous recherchez plusieurs fois une colonne d'une table, créez un index pour cette colonne. If you or your app needs data from multiple columns according to the criteria, create a composite index 2. Avoid select * only those required columns, if you select all unwanted columns, this will only consume more server memory and cause the server to slow down at high load or frequency times For example, your table contains columns such as created_at and updated_at and timestamps, and then avoid selecting * because they do not require inefficient query se

Copier et coller dans MySQL incluent les étapes suivantes: Sélectionnez les données, copiez avec Ctrl C (Windows) ou CMD C (Mac); Cliquez avec le bouton droit à l'emplacement cible, sélectionnez Coller ou utilisez Ctrl V (Windows) ou CMD V (Mac); Les données copiées sont insérées dans l'emplacement cible ou remplacer les données existantes (selon que les données existent déjà à l'emplacement cible).

Une explication détaillée des attributs d'acide de base de données Les attributs acides sont un ensemble de règles pour garantir la fiabilité et la cohérence des transactions de base de données. Ils définissent comment les systèmes de bases de données gérent les transactions et garantissent l'intégrité et la précision des données même en cas de plantages système, d'interruptions d'alimentation ou de plusieurs utilisateurs d'accès simultanément. Présentation de l'attribut acide Atomicité: une transaction est considérée comme une unité indivisible. Toute pièce échoue, la transaction entière est reculée et la base de données ne conserve aucune modification. Par exemple, si un transfert bancaire est déduit d'un compte mais pas augmenté à un autre, toute l'opération est révoquée. BeginTransaction; UpdateAccountSsetBalance = Balance-100Wh
