Python 迭代器工具包【推荐】
0x01 介绍了迭代器的概念,即定义了 __iter__() 和 __next__() 方法的对象,或者通过 yield 简化定义的“可迭代对象”,而在一些函数式编程语言(见 0x02 Python 中的函数式编程)中,类似的迭代器常被用于产生特定格式的列表(或序列),这时的迭代器更像是一种数据结构而非函数(当然在一些函数式编程语言中,这两者并无本质差异)。Python 借鉴了 APL, Haskell, and SML 中的某些迭代器的构造方法,并在 itertools 中实现(该模块是通过 C 实现,源代码:/Modules/itertoolsmodule.c)。
itertools 模块提供了如下三类迭代器构建工具:
无限迭代
整合两序列迭代
组合生成器
1. 无限迭代
所谓无限(infinite)是指如果你通过 for...in... 的语法对其进行迭代,将陷入无限循环,包括:
count(start, [step]) cycle(p) repeat(elem [,n])
从名字大概可以猜出它们的用法,既然说是无限迭代,我们自然不会想要将其所有元素依次迭代取出,而通常是结合 map/zip 等方法,将其作为一个取之不尽的数据仓库,与有限长度的可迭代对象进行组合操作:
from itertools import cycle, count, repeat print(count.__doc__) count(start=0, step=1) --> count object Return a count object whose .__next__() method returns consecutive values. Equivalent to: def count(firstval=0, step=1): x = firstval while 1: yield x x += step counter = count() print(next(counter)) print(next(counter)) print(list(map(lambda x, y: x+y, range(10), counter))) odd_counter = map(lambda x: 'Odd#{}'.format(x), count(1, 2)) print(next(odd_counter)) print(next(odd_counter)) 0 1 [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] Odd#1 Odd#3 print(cycle.__doc__) cycle(iterable) --> cycle object Return elements from the iterable until it is exhausted. Then repeat the sequence indefinitely. cyc = cycle(range(5)) print(list(zip(range(6), cyc))) print(next(cyc)) print(next(cyc)) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 0)] 1 2 print(repeat.__doc__) repeat(object [,times]) -> create an iterator which returns the object for the specified number of times. If not specified, returns the object endlessly. print(list(repeat('Py', 3))) rep = repeat('p') print(list(zip(rep, 'y'*3))) ['Py', 'Py', 'Py'] [('p', 'y'), ('p', 'y'), ('p', 'y')]
2. 整合两序列迭代
所谓整合两序列,是指以两个有限序列为输入,将其整合操作之后返回为一个迭代器,最为常见的 zip 函数就属于这一类别,只不过 zip 是内置函数。这一类别完整的方法包括:
accumulate() chain()/chain.from_iterable() compress() dropwhile()/filterfalse()/takewhile() groupby() islice() starmap() tee() zip_longest()
这里就不对所有的方法一一举例说明了,如果想要知道某个方法的用法,基本通过 print(method.__doc__) 就可以了解,毕竟 itertools 模块只是提供了一种快捷方式,并没有隐含什么深奥的算法。这里只对下面几个我觉得比较有趣的方法进行举例说明。
from itertools import cycle, compress, islice, takewhile, count # 这三个方法(如果使用恰当)可以限定无限迭代 # print(compress.__doc__) print(list(compress(cycle('PY'), [1, 0, 1, 0]))) # 像操作列表 l[start:stop:step] 一样操作其它序列 # print(islice.__doc__) print(list(islice(cycle('PY'), 0, 2))) # 限制版的 filter # print(takewhile.__doc__) print(list(takewhile(lambda x: x < 5, count()))) ['P', 'P'] ['P', 'Y'] [0, 1, 2, 3, 4] from itertools import groupby from operator import itemgetter print(groupby.__doc__) for k, g in groupby('AABBC'): print(k, list(g)) db = [dict(name='python', script=True), dict(name='c', script=False), dict(name='c++', script=False), dict(name='ruby', script=True)] keyfunc = itemgetter('script') db2 = sorted(db, key=keyfunc) # sorted by `script' for isScript, langs in groupby(db2, keyfunc): print(', '.join(map(itemgetter('name'), langs))) groupby(iterable[, keyfunc]) -> create an iterator which returns (key, sub-iterator) grouped by each value of key(value). A ['A', 'A'] B ['B', 'B'] C ['C'] c, c++ python, ruby from itertools import zip_longest # 内置函数 zip 以较短序列为基准进行合并, # zip_longest 则以最长序列为基准,并提供补足参数 fillvalue # Python 2.7 中名为 izip_longest print(list(zip_longest('ABCD', '123', fillvalue=0))) [('A', '1'), ('B', '2'), ('C', '3'), ('D', 0)]
3. 组合生成器
关于生成器的排列组合:
product(*iterables, repeat=1):两输入序列的笛卡尔乘积 permutations(iterable, r=None):对输入序列的完全排列组合 combinations(iterable, r):有序版的排列组合 combinations_with_replacement(iterable, r):有序版的笛卡尔乘积 from itertools import product, permutations, combinations, combinations_with_replacement print(list(product(range(2), range(2)))) print(list(product('AB', repeat=2))) [(0, 0), (0, 1), (1, 0), (1, 1)] [('A', 'A'), ('A', 'B'), ('B', 'A'), ('B', 'B')] print(list(combinations_with_replacement('AB', 2))) [('A', 'A'), ('A', 'B'), ('B', 'B')] # 赛马问题:4匹马前2名的排列组合(A^4_2) print(list(permutations('ABCDE', 2))) [('A', 'B'), ('A', 'C'), ('A', 'D'), ('A', 'E'), ('B', 'A'), ('B', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'A'), ('C', 'B'), ('C', 'D'), ('C', 'E'), ('D', 'A'), ('D', 'B'), ('D', 'C'), ('D', 'E'), ('E', 'A'), ('E', 'B'), ('E', 'C'), ('E', 'D')] # 彩球问题:4种颜色的球任意抽出2个的颜色组合(C^4_2) print(list(combinations('ABCD', 2))) [('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D')]

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

De nombreux développeurs de sites Web sont confrontés au problème de l'intégration de Node.js ou des services Python sous l'architecture de lampe: la lampe existante (Linux Apache MySQL PHP) a besoin d'un site Web ...

Lorsque vous utilisez Scapy Crawler, la raison pour laquelle les fichiers de stockage persistants ne peuvent pas être écrits? Discussion Lorsque vous apprenez à utiliser Scapy Crawler pour les robots de données, vous rencontrez souvent un ...

Choix de la bibliothèque de développement d'applications de bureau multiplateforme Python De nombreux développeurs Python souhaitent développer des applications de bureau pouvant s'exécuter sur Windows et Linux Systems ...

Python Process Pool gère les demandes TCP simultanées qui font coincé le client. Lorsque vous utilisez Python pour la programmation réseau, il est crucial de gérer efficacement les demandes TCP simultanées. ...

Explorez profondément la méthode de visualisation de Python Functools.Partial Objet dans Functools.Partial en utilisant Python ...

Précision avec Python: Source de sablier Dessin graphique et vérification d'entrée Cet article résoudra le problème de définition variable rencontré par un novice Python dans le programme de dessin graphique de sablier. Code...

Comment gérer les images haute résolution à Python pour trouver des zones blanches? Traitement d'une image haute résolution de 9000x7000 pixels, comment trouver avec précision deux de l'image ...

Conversion et statistiques de données: traitement efficace des grands ensembles de données Cet article introduira en détail comment convertir une liste de données contenant des informations sur le produit en une autre contenant ...
