使用Python导出Excel图表以及到处为图片的方法
本篇讲下如何使用纯python代码将excel 中的图表导出为图片。这里需要使用的模块有win32com、pythoncom模块。
网上经查询有人已经写好的模块pyxlchart,具体代码如下:
from win32com.client import Dispatch import os import pythoncom class Pyxlchart(object): """ This class exports charts in an Excel Spreadsheet to the FileSystem win32com libraries are required. """ def __init__(self): pythoncom.CoInitialize() self.WorkbookDirectory = '' self.WorkbookFilename = '' self.GetAllWorkbooks = False self.SheetName = '' self.ChartName = '' self.GetAllWorkbookCharts = False self.GetAllWorksheetCharts = False self.ExportPath = '' self.ImageFilename = '' self.ReplaceWhiteSpaceChar = '_' self.ImageType = 'jpg' def __del__(self): pass def start_export(self): if self.WorkbookDirectory == '': return "WorkbookDirectory not set" else: self._export() def _export(self): """ Exports Charts as determined by the settings in class variabels. """ excel = Dispatch("excel.application") excel.Visible = False wb = excel.Workbooks.Open(os.path.join(self.WorkbookDirectory ,self.WorkbookFilename)) self._get_Charts_In_Worksheet(wb,self.SheetName,self.ChartName) wb.Close(False) excel.Quit() def _get_Charts_In_Worksheet(self,wb,worksheet = "", chartname = ""): if worksheet != "" and chartname != "": sht = self._change_sheet(wb,worksheet) cht = sht.ChartObjects(chartname) self._save_chart(cht) return if worksheet == "": for sht in wb.Worksheets: for cht in sht.ChartObjects(): if chartname == "": self._save_chart(cht) else: if chartname == cht.Name: self._save_chart(cht) else: sht = wb.Worksheets(worksheet) for cht in sht.ChartObjects(): if chartname == "": self._save_chart(cht) else: if chartname == cht.Name: self._save_chart(cht) def _change_sheet(self,wb,worksheet): try: return wb.Worksheets(worksheet) except: raise NameError('Unable to Select Sheet: ' + worksheet + ' in Workbook: ' + wb.Name) def _save_chart(self,chartObject): imagename = self._get_filename(chartObject.Name) savepath = os.path.join(self.ExportPath,imagename) print savepath chartObject.Chart.Export(savepath,self.ImageType) def _get_filename(self,chartname): """ Replaces white space in self.WorkbookFileName with the value given in self.ReplaceWhiteSpaceChar If self.ReplaceWhiteSpaceChar is an empty string then self.WorkBookFileName is left as is """ if self.ImageFilename == '': self.ImageFilename == chartname if self.ReplaceWhiteSpaceChar != '': chartname.replace(' ',self.ReplaceWhiteSpaceChar) if self.ImageFilename != "": return self.ImageFilename + "_" + chartname + "." + self.ImageType else: return chartname + '.' + self.ImageType if __name__ == "__main__": xl = Pyxlchart() xl.WorkbookDirectory = "\\\\maawtns01\\discipline\\procurement\\MATERIEL\\Raw Material\\Data Management\\Hawk" xl.WorkbookFilename = "Hawk Workability KPI.xlsm" xl.SheetName = "" xl.ImageFilename = "MyChart1" xl.ExportPath = "d:\\pycharts" xl.ChartName = "" xl.start_export() print "This file does not currently allow direct access" print "Please import PyXLChart and run start_export()"
这里还使用Excel vba将chart另存为图片篇中创建的chart_column.xlsx表,使用上面的模块的方法如下:
from pyxlchart import Pyxlchart xl = Pyxlchart() xl.WorkbookDirectory = "D:\\" xl.WorkbookFilename = "chart_column.xlsx" xl.SheetName = "" #xl.ImageFilename = "MyChart1" xl.ExportPath = "d:\\" xl.ChartName = "" xl.start_export()
由于有该表里有多张图表,所以上面未指定xl.ImageFilename ,使用示例如下:
Excel vba将chart另存为图片
python下使用xlswriter模块,可以轻松在excel 中创建图片,不过想实现将生成的chart图表导出为图片,在email 中导入图片的目标 。经网上查询未找到通过python代码将excel 中已经生成的图片导出为图片的方法,不过通过变通方法,使用excel 内的vba 宏却可以轻松将图片导出。
1、导出单张图片
python 创建chart图片代码:
#coding: utf-8 import xlsxwriter import random def get_num(): return random.randrange(0, 201, 2) workbook = xlsxwriter.Workbook('analyse_spider.xlsx') #创建一个Excel文件 worksheet = workbook.add_worksheet() #创建一个工作表对象 chart = workbook.add_chart({'type': 'column'}) #创建一个图表对象 #定义数据表头列表 title = [u'业务名称',u'星期一',u'星期二',u'星期三',u'星期四',u'星期五',u'星期六',u'星期日',u'平均流量'] buname= [u'运维之路',u'就要IT',u'baidu.com',u'361way.com',u'91it.org'] #定义频道名称 #定义5频道一周7天流量数据列表 data = [] for i in range(5): tmp = [] for j in range(7): tmp.append(get_num()) data.append(tmp) format=workbook.add_format() #定义format格式对象 format.set_border(1) #定义format对象单元格边框加粗(1像素)的格式 format_title=workbook.add_format() #定义format_title格式对象 format_title.set_border(1) #定义format_title对象单元格边框加粗(1像素)的格式 format_title.set_bg_color('#cccccc') #定义format_title对象单元格背景颜色为 #'#cccccc'的格式 format_title.set_align('center') #定义format_title对象单元格居中对齐的格式 format_title.set_bold() #定义format_title对象单元格内容加粗的格式 format_ave=workbook.add_format() #定义format_ave格式对象 format_ave.set_border(1) #定义format_ave对象单元格边框加粗(1像素)的格式 format_ave.set_num_format('0.00') #定义format_ave对象单元格数字类别显示格式 #下面分别以行或列写入方式将标题、业务名称、流量数据写入起初单元格,同时引用不同格式对象 worksheet.write_row('A1',title,format_title) worksheet.write_column('A2', buname,format) worksheet.write_row('B2', data[0],format) worksheet.write_row('B3', data[1],format) worksheet.write_row('B4', data[2],format) worksheet.write_row('B5', data[3],format) worksheet.write_row('B6', data[4],format) #定义图表数据系列函数 def chart_series(cur_row): worksheet.write_formula('I'+cur_row, \ '=AVERAGE(B'+cur_row+':H'+cur_row+')',format_ave) #计算(AVERAGE函数)频 #道周平均流量 chart.add_series({ 'categories': '=Sheet1!$B$1:$H$1', #将“星期一至星期日”作为图表数据标签(X轴) 'values': '=Sheet1!$B$'+cur_row+':$H$'+cur_row, #频道一周所有数据作 #为数据区域 'line': {'color': 'black'}, #线条颜色定义为black(黑色) 'name': '=Sheet1!$A$'+cur_row, #引用业务名称为图例项 }) for row in range(2, 7): #数据域以第2~6行进行图表数据系列函数调用 chart_series(str(row)) chart.set_size({'width': 577, 'height': 287}) #设置图表大小 chart.set_title ({'name': u'爬虫分析'}) #设置图表(上方)大标题 chart.set_y_axis({'name': 'count'}) #设置y轴(左侧)小标题 worksheet.insert_chart('A8', chart) #在A8单元格插入图表 workbook.close() #关闭Excel文档
由于这里只有一张图片,通过vba 代码很容易生成图片 。方法为,打开该excel 图表,通过alt + F11 快捷键打开宏编辑界面;打开VB编辑器的立即窗口:”视图“-”立即窗口“,或者使用快捷键"Ctrl + G" ,接着输入如下代码
activesheet.ChartObjects(1).Chart.Export "C:\chart.png"
按 " Enter " 键后,会在C盘生成上面的生成的chart图表。
二、导出多张图表
python代码如下:
#coding: utf-8 import xlsxwriter workbook = xlsxwriter.Workbook('chart_column.xlsx') worksheet = workbook.add_worksheet() bold = workbook.add_format({'bold': 1}) # 这是个数据table的列 headings = ['Number', 'Batch 1', 'Batch 2'] data = [ [2, 3, 4, 5, 6, 7], [10, 40, 50, 20, 10, 50], [30, 60, 70, 50, 40, 30], ] worksheet.write_row('A1', headings, bold) worksheet.write_column('A2', data[0]) worksheet.write_column('B2', data[1]) worksheet.write_column('C2', data[2]) ############################################ #创建一个图表,类型是column chart1 = workbook.add_chart({'type': 'column'}) # 配置series,这个和前面wordsheet是有关系的。 chart1.add_series({ 'name': '=Sheet1!$B$1', 'categories': '=Sheet1!$A$2:$A$7', 'values': '=Sheet1!$B$2:$B$7', }) # Configure a second series. Note use of alternative syntax to define ranges. chart1.add_series({ 'name': ['Sheet1', 0, 2], 'categories': ['Sheet1', 1, 0, 6, 0], 'values': ['Sheet1', 1, 2, 6, 2], }) # Add a chart title and some axis labels. chart1.set_title ({'name': 'Results of sample analysis'}) chart1.set_x_axis({'name': 'Test number'}) chart1.set_y_axis({'name': 'Sample length (mm)'}) # Set an Excel chart style. chart1.set_style(11) # Insert the chart into the worksheet (with an offset). worksheet.insert_chart('D2', chart1, {'x_offset': 25, 'y_offset': 10}) ####################################################################### # # Create a stacked chart sub-type. # chart2 = workbook.add_chart({'type': 'column', 'subtype': 'stacked'}) # Configure the first series. chart2.add_series({ 'name': '=Sheet1!$B$1', 'categories': '=Sheet1!$A$2:$A$7', 'values': '=Sheet1!$B$2:$B$7', }) # Configure second series. chart2.add_series({ 'name': '=Sheet1!$C$1', 'categories': '=Sheet1!$A$2:$A$7', 'values': '=Sheet1!$C$2:$C$7', }) # Add a chart title and some axis labels. chart2.set_title ({'name': 'Stacked Chart'}) chart2.set_x_axis({'name': 'Test number'}) chart2.set_y_axis({'name': 'Sample length (mm)'}) # Set an Excel chart style. chart2.set_style(12) # Insert the chart into the worksheet (with an offset). worksheet.insert_chart('D18', chart2, {'x_offset': 25, 'y_offset': 10}) ####################################################################### # # Create a percentage stacked chart sub-type. # chart3 = workbook.add_chart({'type': 'column', 'subtype': 'percent_stacked'}) # Configure the first series. chart3.add_series({ 'name': '=Sheet1!$B$1', 'categories': '=Sheet1!$A$2:$A$7', 'values': '=Sheet1!$B$2:$B$7', }) # Configure second series. chart3.add_series({ 'name': '=Sheet1!$C$1', 'categories': '=Sheet1!$A$2:$A$7', 'values': '=Sheet1!$C$2:$C$7', }) # Add a chart title and some axis labels. chart3.set_title ({'name': 'Percent Stacked Chart'}) chart3.set_x_axis({'name': 'Test number'}) chart3.set_y_axis({'name': 'Sample length (mm)'}) # Set an Excel chart style. chart3.set_style(13) # Insert the chart into the worksheet (with an offset). worksheet.insert_chart('D34', chart3, {'x_offset': 25, 'y_offset': 10}) workbook.close()
同一数据源上面创建了三种类型的图 ,由于有三张图,上面的导出一张图的方法肯定是不行了,这里打开宏,创建如下宏内容:
Sub exportimg() Dim XlsChart As ChartObject For Each XlsChart In Worksheets("Sheet1").ChartObjects XlsChart.Chart.Export Filename:="C:\" & XlsChart.Name & ".jpg", FilterName:="JPG" Next End Sub
该示例这里就不再截图,具体可以自行运行。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

L'article présente le fonctionnement de la base de données MySQL. Tout d'abord, vous devez installer un client MySQL, tel que MySQLWorkBench ou le client de ligne de commande. 1. Utilisez la commande MySQL-UROot-P pour vous connecter au serveur et connecter avec le mot de passe du compte racine; 2. Utilisez Createdatabase pour créer une base de données et utilisez Sélectionner une base de données; 3. Utilisez CreateTable pour créer une table, définissez des champs et des types de données; 4. Utilisez InsertInto pour insérer des données, remettre en question les données, mettre à jour les données par mise à jour et supprimer les données par Supprimer. Ce n'est qu'en maîtrisant ces étapes, en apprenant à faire face à des problèmes courants et à l'optimisation des performances de la base de données que vous pouvez utiliser efficacement MySQL.

Les principales raisons de la défaillance de l'installation de MySQL sont les suivantes: 1. Problèmes d'autorisation, vous devez s'exécuter en tant qu'administrateur ou utiliser la commande sudo; 2. Des dépendances sont manquantes et vous devez installer des packages de développement pertinents; 3. Conflits du port, vous devez fermer le programme qui occupe le port 3306 ou modifier le fichier de configuration; 4. Le package d'installation est corrompu, vous devez télécharger et vérifier l'intégrité; 5. La variable d'environnement est mal configurée et les variables d'environnement doivent être correctement configurées en fonction du système d'exploitation. Résolvez ces problèmes et vérifiez soigneusement chaque étape pour installer avec succès MySQL.

Le fichier de téléchargement mysql est corrompu, que dois-je faire? Hélas, si vous téléchargez MySQL, vous pouvez rencontrer la corruption des fichiers. Ce n'est vraiment pas facile ces jours-ci! Cet article expliquera comment résoudre ce problème afin que tout le monde puisse éviter les détours. Après l'avoir lu, vous pouvez non seulement réparer le package d'installation MySQL endommagé, mais aussi avoir une compréhension plus approfondie du processus de téléchargement et d'installation pour éviter de rester coincé à l'avenir. Parlons d'abord de la raison pour laquelle le téléchargement des fichiers est endommagé. Il y a de nombreuses raisons à cela. Les problèmes de réseau sont le coupable. L'interruption du processus de téléchargement et l'instabilité du réseau peut conduire à la corruption des fichiers. Il y a aussi le problème avec la source de téléchargement elle-même. Le fichier serveur lui-même est cassé, et bien sûr, il est également cassé si vous le téléchargez. De plus, la numérisation excessive "passionnée" de certains logiciels antivirus peut également entraîner une corruption des fichiers. Problème de diagnostic: déterminer si le fichier est vraiment corrompu

MySQL a refusé de commencer? Ne paniquez pas, vérifions-le! De nombreux amis ont découvert que le service ne pouvait pas être démarré après avoir installé MySQL, et ils étaient si anxieux! Ne vous inquiétez pas, cet article vous emmènera pour le faire face calmement et découvrez le cerveau derrière! Après l'avoir lu, vous pouvez non seulement résoudre ce problème, mais aussi améliorer votre compréhension des services MySQL et vos idées de problèmes de dépannage, et devenir un administrateur de base de données plus puissant! Le service MySQL n'a pas réussi et il y a de nombreuses raisons, allant des erreurs de configuration simples aux problèmes système complexes. Commençons par les aspects les plus courants. Connaissances de base: une brève description du processus de démarrage du service MySQL Service Startup. Autrement dit, le système d'exploitation charge les fichiers liés à MySQL, puis démarre le démon mysql. Cela implique la configuration

MySQL peut s'exécuter sans connexions réseau pour le stockage et la gestion des données de base. Cependant, la connexion réseau est requise pour l'interaction avec d'autres systèmes, l'accès à distance ou l'utilisation de fonctionnalités avancées telles que la réplication et le clustering. De plus, les mesures de sécurité (telles que les pare-feu), l'optimisation des performances (choisissez la bonne connexion réseau) et la sauvegarde des données sont essentielles pour se connecter à Internet.

L'optimisation des performances MySQL doit commencer à partir de trois aspects: configuration d'installation, indexation et optimisation des requêtes, surveillance et réglage. 1. Après l'installation, vous devez ajuster le fichier my.cnf en fonction de la configuration du serveur, tel que le paramètre innodb_buffer_pool_size, et fermer query_cache_size; 2. Créez un index approprié pour éviter les index excessifs et optimiser les instructions de requête, telles que l'utilisation de la commande Explication pour analyser le plan d'exécution; 3. Utilisez le propre outil de surveillance de MySQL (ShowProcessList, Showstatus) pour surveiller la santé de la base de données, et sauvegarde régulièrement et organisez la base de données. Ce n'est qu'en optimisant en continu ces étapes que les performances de la base de données MySQL peuvent être améliorées.

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.
